Code Governance

«Code» as Regulation in a Self-governed Internet Applicati
from a Computer Science Perspective

vorgelegt von Diplom-Informatiker Kei Ishii

von der Fakutat IV — Elektrotechnik und Informatik
der Technischen Universitat Berlin
zur Erlangung des akademischen Grades

Doktor der Ingenieurswissenschaften
—Dr. Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Bernd Mahr
Berichter: Prof. Dr. Bernd Lutterbeck
Berichter: Prof. Dr. Hans-Ulrich Heil3

Tag der wissenschaftlichen Aussprache: 7. Juli 2005

Berlin 2005
D 83

on

Contents

Main Hypotheses 15
Introduction 17
| Internet, Governance, and «Code» 21
1 Internet Governance and «Code» 23
1.1 InternetGovernanCe o e e e e 23
1.2 "And How Shall the 'Net Be Governed™? 23
1.3 GOVernance e e e 25
1.4 «Code» as Regulation Modality 26
2 «Code» Governance: An Empirical Analysis 29
2.1 The Choice of the Objectof Analysis. 29
2.2 MainHypothesis 30
2.3 Two Modelsof Regulation 30
2.3.1 "Lex Informatica”: Key Aspects of a Regulation System 31
232 TypesofRules 33
2.4 Technical Notesonthe Analysis 34
Il Empirical Analysis of the Internet Relay Chat 37
3 The Internet Relay Chat 39
3.1 The Functional Perspective —UsingthelRC 40
3.1.1 Ahypotheticaluserscenario 40
3.1.1.1 Channels 41
3.1.1.2 PrivateMessages 42
3.1.1.3 CTCP (Client-to-Client Protocol) 43
3.1.14 IRCCommands 43

Contents

4

3.1.2 Sizeand GrowthofthelRC 44
3.2 A Conceptual View of the Technology of IRC 46
3.2.1 "Polity”: Structural Overview ofthe IRC 46
3.21.1 IRCServer. 47
3.21.2 IRCClient e 47
3.213 IRCUserBot 48
3.2.1.4 IRCService e 49
3.2.15 IRCNetwork 50
3.2.2 "Politics” A Processual ViewoftheIRC 52
3.2.2.1 The Client-server architecture 52
3.2.2.2 InsidetheIRCserverprocess 53
3.2.3 "Policy”: IRC Server Installation and Configuration 54
3.2.3.1 Installationofthe IRC server 55
3.2.3.2 IRCserverconfiguration 58
3.2.4 Technical environment and code distribution 59
3.3 Main Social RolesinthelRC 60
3.3.1 IRCadministrator 61
3.3.2 IRC Service administrator 61
3.3.3 Coder 62
3.34 [IRCuser 62
3.35 [IRCoperator e 63
3.3.6 Channeloperator 64
«Code» Governance in IRC Channels 65
4.1 PrincipalChannelDesign e 66
4.2 NumberedChannels. 8 6
4.2.1 FunctionalDesign e 69
4.2.2 Technical Implementation 70
4.2.3 The "Maximum Users Per Channel” Channel Property 72
4.3 Named Channels - a Major Change in «Code» Governance77
4.3.1 Names, modes, and the channel operator. 77
4.3.2 «Code» Evolves — Further Changes in Channel Design 81
Sanctions in the IRC 87
5.1 The /kill Command — Immediate Sanction 88
5.1.1 Functionality and Implementation 88
5.1.2 Changesinthe /killcommand 9 8
5.2 The K-Line — Entry Denial Sanctions 92

Contents

5.2.1 Functional description and technical implementatio. 92
5.2.2 Config lines complementing K-line sanctioning 94
5.3 AccesstoK-linesforIRCoperators 97
5.3.1 First experiment — Undernet’s /kline and /addline oc@ands 98
5.3.2 /kline and exceptionsintheEFnet 100
54 Beyond/killsandK-lines L L 101
5.4.1 Delegating sanctioning power — Channel modes, kicllbans . . . 101
5.4.2 Non-Sanctioning «Code» Remedies 102
6 Nickname and Channel Ownership 109
6.1 Nicknames, Channel Names, and Early Ownership Policies 110
6.1.1 Nicknames 110
6.1.2 Channelnames 112
6.2 Policy Changes With Bots and Services 113
6.2.1 Channel Control with the Eggdropuserbot 113
6.2.2 The NickServservicebot. 161
6.3 [IRC Channel Registration Services ceeen .. 118
6.3.1 Channel Registration in the DALnet: ChanServ Service 119
6.3.1.1 Channelregistration 120
6.3.1.2 Channel managementfeatures. 121
6.3.2 Channel Registration in the Undernet: The X/W Service 123
6.3.2.1 Channelregistration 123
6.3.2.2 Channel management: The X and W channel service.bdt25
7 Controlling the Controllers? 129
7.1 IRC Operator—Powerand Control 129
7.2 Nominating IRC operators and IRCop Netiquette 132
7.3 NoticesandLogs 513
7.3.1 Notices e 136
7.3.2 Logging 140
7.4 TheUndernetUWorld Service 140
7.4.1 Aboutthe UWorld Service 114
7.4.2 Functionality 142
7421 UWorldcommands 143
7.4.2.2 UWorld automatic functions 146
7.43 UWorldUser ACCeSS o o i i ittt 148
7.4.4 Control in UWorld: Information, Notices,andLogs 149

Contents

8 IRC Network Issues 155
8.1 «Code» Architecture Shapes the Social Constitution 155
8.1.1 IRC: Topology, Data Distribution and Technical Ratite 155
8.1.2 DNS: Topology, Data Distribution and Technical Rasile 158
8.1.3 Comparison between the IRC and DNS architectures 160
8.1.4 Architecture as Constitution 161
8.2 The "Great Split": The Forking of AnetandEFnet. 162
8.2.1 Open-server servers vs. closed-server servers 163
[l Some Notes on the Concept of «Code» Governance 165
9 Lex Informatica Revisited 169
9.1 Framework 169
9.2 Jurisdiction 701
9.3 Content 172
9.4 SOUICE e e e 173
9.5 Customized Rules and Customization Processes 174
9.5.1 Rule customization on the «code»level 175
9.5.1.1 Sourcecodeaccess 175
9.5.1.2 Systemaccess 178
9.5.1.3 Interfaceaccess 179
9.5.1.4 USeracCess it 180
9.6 Primary Enforcement o 181
10 Rule Types in «Codex» 183
11 Outlook 185
11.1 Validating and Refining the «Code» Governance model 185
11.2 Computer Science Implications from «Code» Governance. 188
IV Appendix 191
12 IRC Chronology 193
12.1 1989 — The Birth of the Internet Relay Chat ceeeee ... 193
12.2 1989-1990 — Copyright, named channels and the' grbat sp....... 194
12.3 1990-1992 — Growth and Development 195
12.4 1993 — The first successful fork: Undernet 196

Contents

12.5 1994 — Another fork: DALnet 196
12.6 1996 — IRCnet forksoff EFnet 196
12.7 The IRC Source Code Copyright 197
13 Tools for the Examination of the IRC Source Code 199
13.1 In Search oftheRightTool 199
13.2 A Makeshift Solution L 202
13.3 The Analysis e 320
14 List of IRC server source code packages 205
14.1 Onet e e e e 205
14.2 EFnet e 205
14.2.1 Standard 205
14.2.2 +CS . . . o e 205
14.2.3 +thandHybrid 207
14.3 Undernet e 207
144 IRCNet. e e e e 209
Bibliography 211

Contents

List of Tables

2.1

3.1
3.2

4.1

5.1

6.1
6.2

7.1
7.2
7.3
7.4

141
14.2
14.3
14.4
145
14.6
14.7
14.8

Lex Informatica (Reidenberg, 1998,p.569) 31
Configuration lines in server versionirc2.1.1 (Oct. 998 59
Social RolesintheIRC 61l
Common commands in connection with IRC channels (Pib@83) 68
Changes in thkkill commandcode 92
DALnet Channel Service Officials 122
XIW userlevels s 512
IRC operator privlegedcommands 131
Notices sent to IRCops in irc server versionirc2.1.1 138
Uworld commands and accesslevel 149
Uworld commands triggeringnotices 151
OnetserverversSionS e e e e 205
EFnet serverversions2.5and 2.6 e 206
EFnet serverversions2.7and 2.8 e 206
EFnet +CS (comstud) versions 207
EFnet server versions +th and HybridUndernet serwsiores u2.9 and u2.10 208
Undernet serverversions 2.8 e 208
Undernet server versionsu2.9andu2.10 209
EFnet serverversions2.7and 2.8 e 210

List of Tables

10

List of Figures

11

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2

5.1
5.2

6.1

8.1
8.2
8.3

Four Regulation Modalities (Lessig, 1999a,p.88) 27
Initial messages when joining an IRC network (Underoet)an 6, 2004) . . 41
Example conversation in the IRC channel "#hottub” 42
Snapshot of a channel listinthe Undernet 44
IRC growth from 1988tolate 1995 45
ElementsofanIRCnetwork 47
Treetopology 50
Undernet network (around 1993).. bl
Basic IRC client-server configuration b2
Model of the serverprocess 54
IRC serverinstallationsteps e 55
IRC Timeline — Numbered Channels 69
Linked listforchannels 71
Flood block withiignore L 104
Flood block with/'silence, 105
Stepsto SetUpan EggdropBot 114
Spanningtreetopology L 156
Treetopologyasa’™ree” 159
QueryingaDomainName 016

11

List of Figures

12

List of Algorithms

1 Thestruct Channel data structure (slightly simplified) 70
2 Channel limitcheckim_channel() 73
3 is_full() and UnLimChannel() functions 74

4 MAXUSERSPERCHANNEL directive 74
5 Startup option (commented out) for maxusersperchannel. 75
6 OPER _KILLdirective o e 91
7 LOCAL_KILLS_ONLY definition 91
8 Fline e 94
9 "Restrict” configuration line (R-line), 95
10 "Dump”’ configurationline (D-line) 97
11 DYNAMIC_CONF directive (activate /kline and /addline corands). 99
12 ’Exception” configuration line (E-line) 101
13 Thel/ignorecommand e 310
14 Eggdrop configuration lines (examples) 115
15 ’Operator” configuration line (O-line) 130
16 ’Quarantine” configuration line (Q-line) 163

13

List of Algorithms

14

Main Hypotheses

1. «Code», the technology itself, has been identified aswatgn modality next to law,
market and norms.

1. When «code» can be understood as regulation, then thestdomdistinct features which
are similar to other regulation systems and other distieatures which are unique to
«code:

1. The analysis of the source code of an self-organized, self-governed Internet appli-
cation reveals distinct «code» features. Structures and changes in the source code
which achieve some regulator’s end. These features form the «code» regulation
system of the application, it’s «code» gover nance.

a) As a self-organized application, it is ensured that timégypants of the application
themselves shape the source code, and thus are their owatoegu

b) The choice of a self-governed system let me neglect thaatmhat the law and
market modalities have on the setting.

c) An Internet application is positioned at the end of thesnét, directly between
the user and the lower layer technical infrastructure, dsagalistinct and distin-
guishable from other applications.

15

Main Hypotheses

16

Introduction

The starting point of this work is the notion that the softevand hardware underlying the
technically mediated communication and interaction -echdcode» — constitutes a regulation
system, similar to but distinct from the legal system.

The Internet continues to change the ways that people citengh each other, with im-
pacts on all levels of their personal lifes, social groups society at large. This leads to the
still unanswered question of how governance structures t@abe changed in order to cope
with the various problems that these new settings createalv#ady evidence the ongoing
discussions in areas like copyright, privacy, or Interreghmerce.

One constant in all these situations is the existence ofablenblogy, as its effects and
impacts on society are the actual source of all discusslatexestingly though, the very shape
of the technology — the hardware and software itself — hag @dently been recognized as
important source of regulation in the sense that it shapkaseoaictivities by either constraining
or enabling its users. The concept of technology as reggjatieans has found attention in
the form of "code is law!, mainly among legal scholars. As a consequence, this coixep
only studied as far as «code» can be used to serve legaliwbgand purposes.

In the light of another regulatory discourse around thedayi (Internet) "governance”
though, narrowing «code» to a mere legal enforcing tool appto limiting. The term gov-
ernance has made it possible to think about regulatory quaslnot in exclusively legal
terms, but to include social norms, market forces, and ghysir technical architecture as
sources of regulation. From this perspective, the "codavig turns into "code as a regulation
modality”, or "code regulates”.

But what does it mean that "code regulates™? It is the purpdsieis work to evaluate the
concept of «code» as a regulation system. To this behaKelttae legal system as 'model reg-
ulation system’ to empirically explore the key conceptsadde» in the context of an Internet
application. | have chosen an existing self-organized;g®mierned Internet application, the
Internet Relay Chat, to understand how the participantshesecode» to govern themselves,
and how the «code» in turn governs the setting.

The Internet Relay Chat (IRC) is one of the major applicatiothe Internet, albeit not as
generally known as the world wide web, email or even filedsiggapplications. Nevertheless,

!Lessig (1999a)

17

Introduction

hundreds of thousands of people use the IRC at any time ofatgyday of the week. It
allows to 'chat’, to exchange short text messages in rea timh other users inside so called
'channels’ (sometimes also referred to as "chat rooms”).

The main feature for my analysis is that the IRC is a self-oizgd, self-governed appli-
cation. "Self-organized” here means that the entire appba structure, a network of IRC
servers, is run and maintained by volunteers without anyaseking corporate or govern-
mental structure directing them. They cooperate to formR hetwork because and as long
as they choose to.

Equally, the software, started by one individual, is condyamaintained and extended by
volunteering individuals forming their own institutionathivironment, again with no company
or governmental organization paying or directing them.

In the same venue, "self-governed” means that the IRC paaiits themselves manage their
common affairs, resolve disputes, create and enforce theirset of rules, with no legal or
market interests or interference. For the social order®fiternet Relay Chat, law or market
forces are not driving forces for its governance. Instedalge part of social order in the IRC
is determined by «code», the technology that constitutespiplication. The «code» defines
what is possible in the IRC and what is not, it determines thesibilities and constraints of
all participants, from the simple user to IRC officials. Cbes in the «code» might alter the
governance characteristics and the constraints and apioes for the IRC participants.

At the core of my examination of the governance structuresdymamics of the Internet
Relay Chat lies the analysis of tseurce codef the IRC server, the determining application
component of an IRC network. By treating the source code azgulatory expression of
the IRC principals, | hope to find distinct features whichabtish the «code» as a distinct
regulation modality, a notion that | call «xcode» governance

* k%

This work is consists of three parts.

In the first part, | develop the notion of «code» as a regutasigstem, by outlining the
discussion which lead to this concept ("Internet Govereaaicd «Code»”, chapter), and
then present my hypothesis and agenda for the main partntigsés of the Internet Relay
Chat (chapter 2).

This analysis proceeds in the six chapters of part Il. Chdtgves an introduction to the
Internet Relay Chat, including its use, its main technicehponents and main social roles of
the participants. Chapter 4 examines the main entity inf€& the channel. By working out
its main features and properties, and their changes ovsutteession of source code versions,
| show how this «code» defines the governance environmepteimenting constraints and
opportunities for the users to shape the social order inredlan

18

Sanctions are a major mechanism in most social settinggpt@hareviews the sanctioning
mechanisms as they are designed and implemented into cgdé,Ahe development of these
tools show how the IRC copes with changing environmentsh sicits successive growth,
creating new governance challenges to be met with adegeguéation tools.

As in other Internet applications, the desire to 'own’ namesold them for a longer period
is prevalent in the Internet Relay Chat. Chapter 6 tracedelielopment of adequate policies
and mechanisms to put them into «code», and enforce them.

The IRC employs officials — IRC operators — to manage the dafflyirs of the servers
and networks, which may include applying sanctions to otlsers. Chapter 7 sketches the
norm rules guiding them, as well as «code» based mechanmpismented to heighten the
transparency of their actions. Also explored is a «codesetbdool which give IRCops and
other users unprecedented power in one of the IRC networks.

Finally, chapter 8 joins two chapters dealing with netwdf&ies: the first section examines
the relationship between architectural structure of adiegion like the IRC, and its gover-
nance impact on the social setting therein. The secondseitices the succession of events
which led to the split up of an IRC network due to fundamentdilgy differences between the
principals.

Part 11l presents the results of the empirical explorations

19

Introduction

20

Part |

Internet, Governance, and «Code»

21

1 Internet Governance and «Code»

The agenda that | have chosen for this work is to further thietstanding of the «code» partin
the concept of «code is law» as popularized by the leadingrspiace law scholar, Lawrence
Lessig. This concept is part of an ongoing discussion about thelatign and regulability
of the Internet. To understand this background of Lessigiscept, a short overview of this
discussion is given.

1.1 Internet Governance

The growing use of the Internet from the beginning of the ¥9B8s spurred the existing
discussion and research of social and societal implicataddmformation and communication
technologies. Many contributions continue to add to the gvewing body of research and
opinions on how these technologies could change everythimg the individuals’ daily life
to the foundations of society at large.

A considerable part of these discussions are concernedegthativeissues: Topics like
copyright, privacy, content control and others are hotypdied topics, and remain largely un-
solved, whereas other areas, for example commercial asttzave found a modus vivendi,
supported by legal regulations and technical solutions.

In parallel to those specific policy issues, another 'metstie has received growing atten-
tion: howandby whomis and should the Internet be regulated?

1.2 "And How Shall the 'Net Be Governed”?

In early contributions (especially legal scholarly onesyjarding how the Internet should be
governed, the view prevailed that the Internet did not posengw challenges to the existing
(legal) regulation regime; some even claimed that the heatiedlid not necessitate any changes
in the regulatory approaches at?allThis stood in contrast to a similarly extreme view of
technologists who deemed that legal regulations couldyewa circumvented by technology:
"The net treats censorship as damage and routes arodnaiiid that they should not 'rule’

1For example in Lessig (1999a)
2See for example Lessig (1999b), referring to a speech byeJEdank Easterbrook.
3This is attributed to John Gilmore; see his website at Htpaiv.toad.com/gnu/, 29 Oct 2004.

23

1 Internet Governance and «Code»

the Internet;

That's the kind of society | want to build. | want a guarantegith physics and mathematiasot
with laws— that we can give ourselves real privacy of personal comaatioins?

These were the extreme ends of the discussion, which bothitheadmerits: There were
a number of issues which could be resolved by legal meansughrcourt decisions, and
changes in statutory law. These developments usually drsusied under the topic label
of cyberlaw. Other issues became non-issues, because of the techeiedbpgment. But
for many issues, such as copyright or the "freedom to tirfkehe tension between "rule of
law” and technological advancements remains to this dayesged in countless contributions,
newspapers, web pages or scholarly articles and books.

At some points, legal scholars began to consider the pdisgibf alternative regulative
means. An early contribution for example concluded thastone issues, "'bottom up” rule
making processes are also workab)efor which he named unilateral self help, [...] con-
tracts, private associations [...] and the developmenustoens® as examples. Other scholars
observed that in the existing Internet, alternatives talleggulations had already emer§ed
which would challenge the notion of government (and thus) lasva "bureaucratic single-
provider institution™®,

Especially influential (and highly controversiglwere the papers by David Johnson and
David Post? who made a theoretical argument on why alternatives to leggllation in the
Internet was not only possible, but should also be activesdydred:

"This new boundary defines a distinct Cyberspace that need<an create new law and legal
institutions of its own. Territorially-based law-makingdilaw-enforcing authorities find this new
environment deeply threatening. But established terait@uthorities may yet learn to defer to
the self-regulatory efforts of Cyberspace participants ware most deeply about this new digital
trade in ideas, information, and services. Separated froctride tied to territorial jurisdictions,
new rules will emerge, in a variety of online spaces, to go@ewride range of new phenomena that
have no clear parallel in the non-virtual world. These nel@swill play the role of law by defining

4Gilmore (1991), my emphasis, K.I.

SSee for example Johnston et al. (1997); Rosenoer (1997).

SEdward Felten, http://www.freedom-to-tinker.com/

"Hardy (1994, p.1054)

Sibid.

9E.g. Valauskas (1996) (arguing that the Internet commesitiave created a "separate law of Cyberspace"
in form "cyber-etiquette protocols"); Oberding and Nottarg (1996) (claiming that there is no need for a
separate jurisdiction in Cyberspace, because Internetmzorties and organizations like the Internet Engi-
neering Task Force (IETF) already provide regulatory ngrms

OHadfield (2000, p.2)

Hsee for example Goldsmith (1998) (contending that the ihetisis anchored in real space, and thus can readily
regulated by national governments), Radin and Wagner (1@98uing that any self-governing Internet or
"anarcho-cyberlibertarianism” setting cannot exist withthe backing of contract law)

12Johnson and Post (1996b,a)

24

1.3 Governance

legal personhood and property, resolving disputes, arslaltizing a collective conversation about
core values?®

More and more legal scholars began to search for altersatove direct legal rule in the

Internet. Such novel concepts are often not confined to grie &wea alone. In parallel to the
Internet specific discussions, consideration about régylalternatives to law were pursued
in other areas as well. For this, the term "governance” esterg

1.3 Governance

The termgovernancé is used in as different contexts as international relat{gisbal gover-
nance) and in corporate environments (corporate govee)a@Gorrespondingly, in the context
of the regulation of the Internet, the tefmternet governanchad been established.

Common to all approaches subsumed under the label of gowernsithe recognition that
situations exist where the "monopoly on coercive ordering dispute resolutiort® held by
the legal system leads to unsatisfying regulatory solstiofiherefore the legal-centric per-
spective is given up in favor of a multi-actor, multi-regioiy approach which still includes
legal means, but not as a sole provider of regulation. Of Hreus definitions of the term
governanc®, | found the one given by the United Nation Commission on @l&overnance
most clarifying:

"Governance is the sum of the many ways individuals andtirgiins, public and private, manage
their common affairs. It is the continuing process throudticlv conflicting or diverse interests
may be accommodated and cooperative action may be takerclutles formal institutions and

regimes empowered to enforce compliance, as well as infoamangements that people and
institutions either have agreed to or perceive to be therast’

This definition points to a number of important topics:

REGULATORS — The definition recognizes a broad range of possible poldsers, from in-
dividuals to institutional, and both public and privateiges. And importantly, the
definition does not prescribe any relationship (hierarhoc not) between them.

13Johnson and Post (1996b)

Yaccording to Grewlich (1999, p.250), the term governanga&érom corporate law.

SHadfield (2000, p.3)

165ee for example MacNeil (1999) ("Governance ranges fromeissof how a sovereign governs its sub-
jects to how communities and institutions govern themseteehow individuals govern their daily lives.”);
McTaggart (1999) ("In this thesis, "governance” is used &satibe the people, institutions, rules, and
principles which made the Internet what it is and influence étolution.”; followed by a short ety-
mology, its uses in corporate law, international relatiets); "Governance.” Wikipedia. 2005-04-19
http://en.wikipedia.org/wiki/Governance. ("Althougdiet term governance is often used synonymously with
the term government it tends rather to be used to describ@rtiesses and systems by which a government
or governor operate.”)

"Commission-on Global-Governance (1995)

25

1 Internet Governance and «Code»

DYNAMIC PROCESS — Regulatory issues can shift due to changing conditionseawdon-
ments, or due to unforeseen effects of the regulation jtesffecially in complex situa-
tions where many regulators instituting various regulatoeans are involved.

REGULATORY MEANS — The kind of rules, institutions or regimes through which tom-
mon affairs are governed is not limited to the legal systeat,dmcompasses various
other means.

Accordingly,Internetgovernance is concerned with the ways that multiple actodsrastitu-
tions in the Internet apply multiple regulatory means to agetheir common affairs.

The governance definition serves as a first step in an integeditection, poses more ques-
tion than it can answer, such as the relationship betweemrthdators, or — and thus we return
to Lessig’s concept of «code is law» — the question of whatrbgulatory means” are.

1.4 «Code» as Regulation Modality

Lessig’s notion of «code is law» is based on a model in whichdeeatifies four distinct
regulatory means or "modalitie¥. One of these modalities in Cyberspace is «code».
Lessig actually develops this model independent of thehete He starts by asking: What
constrains individual behavior? He defines constrainthias'¢onstraining effects of some
action, or policy™®.
He then identifiegour distinct kinds of constraints that limit individual behawi Market,
law, (social) norms, and architecture (figure 1.1).

Basically,law denotes the threat of sanctions by the legal systeanketthe constraints put
up by the price or the (non-) availability in markefspcial) normsas constraints put up by
some "community”, and finallarchitectureas those constraints that physical objects, laws of
nature etc. might put ¢p.

The important modality which establishes the agenda ofwbik is hidden in the last one,
architecture. In his application of this model to Cybersgpdessig identifies this modality as
code

"And finally, an analog for architecture regulates behairiayberspace-code The software and
hardware that make cyberspace what it is constitute a seinstrints on how you can behavé.”

18| essig (1999a, pp.85-90); Lessig (1998, pp.662-4)

¥ emley (1998, p.662)

20In Lessig (1998, pp.667-70), gives a number of exampledustibte these four constraints, providing exam-
ples from smoking to abortion.

2!Lessig (1999a, p.89)

26

1.4 «Code» as Regulation Modality

Mar|

\/
@i:c’»vé Law
\/
\”"T’

Figure 1.1: Four Regulation Modalities (Lessig, 1999a8p.8

«Code»

«Code», as used in this work, points to the hardware and softas regulation modality.

In order to distinguish this specific meaning from the codésource code”, or the "legal @
code”, «code» in the meaning of a regulation modality wilMagtten with quotation marks.

This point sets the stage for the explorations that | punsukeis work. What is a code modal-
ity? How does code constrains, with what consequences gotlenance of a social setting?
And what does this mean for those who shape the code, progegreaftware engineers, com-
puter scientists?

While in the legal scholarly debate this model is widely ateef?, they (understandably)
concentrate on the relationship of «code» and law, thatas, law can effectively employ
«code» to serve legal objectives, or again in Lessig’s terms

"how law might be used to regulate the architectures of csfire so that the architectures of
cyberspace might better advance the ends of law—so thaghtithat is, become more regula-
ble"?3,

As computer scientist, this is not the direction | will takdy starting point is not the "ends
of law”, but rather the technical side of the «code» modatityd the «code» side of Internet
governance.

220f recent articles, see for example Katyal (2003), KesanSirah (2004).
23Lessig (1998, p.676)

27

1 Internet Governance and «Code»

28

2 «Code» Governance: An Empirical
Analysis

2.1 The Choice of the Object of Analysis

In order to explore the notion of «code» as regulation mog&tom a computer science
perspective, | have chosen to empirically analyzelf-organized, self-governed application
in the Internet

In order to explore such a novel conception like «code» adatign modality, arempirical
analysis of an existing governance setting in the Intereetreed sensible; any theoretical
considerations would have afforded a deeper legal undhelisigq (since regulation theory is
largely an area of legal scholarship).

The next problem arose with the choice of an appropriatengettly starting point in tech-
nology afforded access to the technology itself, i.e. th&@®code of the Internet setting,
which excludes most commercial or corporate settings, hnd the market modality influ-
ences. Also, | excluded settings where the influence of lawidcoot be neglected, again
due to my focus on the technical side of governance. Strostgutional influences by legal
objectives could veil otherwise visible «code» structutbsre are studies which show the
institutional impact on the resulting technoldgy

Since some kind of group is necessary for a governance isitutd arise, this left (in
Lessig’s model) a setting where norms and «code» had to mplaynportant role: a self-
governed application in the Internet. As a last criteriagédied access to the source code, if
possible in different versions, of the application, in artiebe able to trace «code» adjustment
to social changes. Therefore a setting where the sourceisoé@eeloped by the participants,
a self-organized application was necessary.

Given these criteria, | found the ideal object of analysith@lnternet Relay Chaf{IRC).
This Internet application allows users to employ in reaidigroup discussions. Created 1989
by a Finnish student, it since then has grown to serve husdrethousands of user in many
IRC networks. Itis

!Kesan and Shah (2003b)

29

2 «Code» Governance: An Empirical Analysis

SELFORGANIZED: These networks are run and maintained by volunteers, agel teetworks
also develop their own IRC software, which is available ags®code.

SELFGOVERNED. Users and maintainers are spread around the world, onlyexbed through
the Internet so that the influence of law on the social ordeegdigible. Also due to its
voluntary nature, no corporate organization exists, sortgher market nor (corporate)
law influence exist.

AN INTERNET APPLICATION. As an application in the Internet, the social setting isreht
based on theoftwareof the application. The IRC principals therefore develog ase
their software which makes it probable that governancesira in the source code can
be traced.

2.2 Main Hypothesis

The choice of the object of analysis already has set somenedeas for my main hypothesis
pursued in this work.

Main hypothesis

The analysis of the source code of an self-organized, se#med Internet application re-
veals distinct «code» features: structures and dynamidhéntechnology which serve as
regulation system, similar to, but distinct from the leggstem. These features form the
«code» governance of the application.

Specifically, | claim that there are discernible structurethe «code» which do not serve
the immediate applications end — the real-time discussatwden users — but are (also) gov-
ernance mechanisms, to help manage the participants tmmon affairs.

These affairs can include the stability of the network, betthnical and social (prevent
or resolve disputes), coordination and management betwsens in the discussion groups,
securing contributions for the network etc. In addition toms guiding the participants, the
«code» creates a regulatory environment, constitutegwdation systerof the application.

In order to be able to discern these «code» features, | neeel soncept of whategulation
systems constituted of. For my methodological approach, | havesen two model which
help me to pinpoint governance structures in the applinataxle.

2.3 Two Models of Regulation

Recognizing regulative structures in «code» needs sonasidehat regulation constitutes of.
To this behalf, | have chosen two legal scholarly conceptshvlucidate some basic aspects

30

2.3 Two Models of Regulation

of regulation and regulation systems.

In the first model, the author explains the «code is law» mdtiplooking for key aspects of
the legal system in «code», or "Lex Informatica”. These keyexts offer a framework for a
regulation system which I will further examine using therayde of the Internet Relay Chat.

The second model is concerned with what kind of rules exisé uthor distinguishes five
types of rules each serving different purposes in a reguiaystem: expressing substantive
objectives, or determine the amount for sanctions, etc.déntification of such rule types in
the IRC «code» is another strong indication for the existai@ «code» regulation system.

2.3.1 "Lex Informatica”: Key Aspects of a Regulation System

Similar and in parallel to Lessig’s concept of «code is lavoel R. Reidenberg developed the
concept ofLex Informatica suggesting that information policy notes are formulatedugh
technology. The core of his article is a comparison of Lex Informaticahvthe "key con-
cepts of a legal regimé’ such as contents, source of the regulation system, oriitsapy
enforcement.

Legal Regulation Lex Informatica
Framework Law Architecture
Jurisdiction Physical Territory Network
Gontianit Statutory/Court Technical Capablll.tles
Expression Customary Practice
Source State Technologists
Customized Rules Contract Configuration
Low Cost Off-the-shelf configuration
Customization Moderate cost Installable
Process standard form configuration
High cost negotiation user choice
Primary Enforcement Court Automated, Self-execution

Table 2.1: Lex Informatica (Reidenberg, 1998, p.569)

These key concepts serve me as framework for my explorabibtie IRC «code» regula-
tion system. | therefore briefly introduce each of these eptgas outlined by Reidenbérg

FRAMEWORK — This is the "basic building block” of the respective redida. Reidenberg
namedaw as basic framework of the legal system, anchitecture rather "architectural

’Reidenberg (1998)
3ibid., p.569.
4All citations from Reidenberg (1998, pp.569-573).

31

2 «Code» Governance: An Empirical Analysis

standards” as the framework of the Lex Informatica, becthese standards "define the
basic structure and defaults of information flows on a comiations network”.

JURISDICTION — The scope of the respective regulation regime. In the gsdem, laws are
generally limited by the physical territory. As equivalgReidenberg names "network”
as the scope inside which the information rules are apgdé¢abthout any further spec-
ification.

CONTENT — This is how the "substantive content” of the regime are egped or derived
from. In the legal system, the "statutory language, goveminmterpretation, and court
decisions” form the main content. Reidenberg offers "téchlrcapabilities and custom-
ary practices” for the «code».

SOURCE — The source of the "default rules”. In law, tis&atewith its "political-governance
process ordinarily establishes the substantive law ofdhd’l In Lex Informatica, it
is the "technology developer and the social process by whigtomary uses evolve”.
Reidenberg distinguishes between two sources: the "téabists” create the "technical
standards” and products, and the user "adopts precis@iatations through practices”.

CUSTOMIZED RULES — In law, contractsare an instrument which gives the governed (per-
sons, organizations) a means to "deviate from the law’suliefales and to customize
the relationship between the parties” (inside legal camsts). Reidenberg likens it to
theconfigurationof technology. And as in the legal realm, configuration is/guassible
if the "architectural standards support the deviations”.

CUSTOMIZATION PROCESS In both regulation systems, there are several kinds obouigia-
tions which differ in the cost for the parties involved. Raitberg claims that the pro-
cesses "show a number of significant differences” betweenwio systems, but only
identifies a "wider range of options” in Lex Informatica, cpared to the legal system.

PRIMARY ENFORCEMENT — Here the two regulation systems differ considerably. @/legal
rules have to be enforced by "juridical authorities”, andlations have to be "pursued
on an ex post basis before the courts”, Reidenberg sees fineement in Lex Infor-
matica as "automated and self-executing”: The design cesvgnt actions from taking
place without the proper permissions or authority”, thiougechanisms like cryptog-
raphy, passwords, etc. In contrast to law, this is an "ex anfercement” implemented
in the capabilities of the technical system.

Taken together, this model serves as a good framework faxpieration of the IRC «code»
governance. In chapter 9 | return to this model and examiesetlkey aspects in the light of
the results of my empirical analysis.

32

2.3 Two Models of Regulation

2.3.2 Types of Rules

While Reidenberg’s model enables me to analyze the geregalation system features, the
"types of rules” as suggested by Robert C. Ellicksprovides a concept afiles In this case,
the comparison with the law does not help: Laws work by "ttjerang] ex postsanction for
the violation of legal right®, is put down in writing, either as court decisions or statyitaw,
and "depends primarily on judicial authorities for rule @mement?. «Code» on the other
hand works differently: it is "built-in’ into the technolggone uses and, as Reidenberg puts
it, "allows for automated and self-executing rule enforea®, as often not even as a visible
sanction, but invisibly preventing some actidng herefore some kind of abstraction from
these features was needed to understand how «code» splgaifigalates.

Ellickson embeds the "types of rules” into a larger contexggrating types of sanctions,
controllers and rules into a "comprehensive system of $ooiatrol™'°, on top of an extensive
empirical analysis of the behavior and disputes betwedlecatn Shasta County, California.
Seen from Lessig’s modality model, he examines the intgipédween law and social norms.

For my analysis, | apply only this part of the larger model ethgives me some under-
standing of the different forms that regulation can takdickson distinguishes five types of
rules:

SUBSTANTIVE RULES. These are rules which "define what primary conduct [...] ade
punished, rewarded, or left alone”, which in law would statgou shall not...” kind of
rule. One example in cyberspace would be the limitation efrthmber of members in
an AOL chat room to twenty-thrég

REMEDIAL RULES: These rules determine the "nature and amount of the sarictrocase
that a substantive rule has triggered one. In law, monetageg fimprisonment would be
examples. In the case of the AOL chat room, the remedial riggatbe a simple entry
rejection.

PROCEDURAL RULES In order to apply sanctions, somedh controller) has to decide if it
is applied or not. For this, the controller needs a basis wganh she can decide. Pro-
cedural rules determine "how controllers are to obtain ae@vinformation” for their
sanctioning decision. Court rules (code of proceduresparexample for such rules.

SEllickson (1991)

6Lessig (1999a, p.89); emphasis in original.

’Reidenberg (1998, p.572)

8ibid.

9Lessig (1998, pp.677-80) suggests here the distinctiondset "objective” and subjective” constraints.
0Ellickson (1991, p.123)

1The following description including all quotes follow Edkson (1991, 132-6).

12| essig (1999a, 68-9)

BIn «code, this also could be a "something”, some technaatime.

33

2 «Code» Governance: An Empirical Analysis

The «code» equivalent might be monitoring systems, or AOlecting information
about members and their activities inside the system

CONSTITUTIVE RULES. In addition to rules which affect the conduct of individsiabther
rules have to specify the conduct of the controllers. Ctutste rule "govern the in-
ternal structures of controllers”. In law, the organizatibstructures of governmental
entities come to mind; Ellickson also gives the example afrastitutive norm, in which
controllers should build a "continuing relationship” betn themselves rather than act-
ing as "loners”.

CONTROLLER-SELECTING RULES Finally, these rules determine the "division of social con
trol labor among the various controllers”. This is most evidwhen considering the
above given definition of governance, where many kinds otfrotlers "manage their
common affairs®®. Also, in most settings, the four regulation modalities swenehow
coordinated, either explicitly or implicitly. One examgta a controller-selecting rule
might be the predominance of law over other modalities, icithf assumed by most
legal scholar¥.

These five type will help me to identify candidates for «codegulation in the source code
of the Internet Relay Chat, when they formulate substamtiles, determine some amount of
sanctions applied, or information for officials the helprthm the sanctioning decision; and
«code» that structures the controllers organization, ordinates between different kinds of
controllers.

2.4 Technical Notes on the Analysis

Before | proceed to the empirical analysis of the InterndaiR€hat, some technical remarks
regarding my strategy are due.

My main object of analysis is the source code of the InterredafRChat. The IRC con-
sists of many networks which, independent of each otheyigeachat functionality over the
Internet. These networks in turn consist of IRC servers velayrthe messages of the IRC
users between themselves. Therefore, the main technicgdaent of an IRC network is the
server.

My explorations therefore rely mainly on the analysis ofsbearce code of the IRC servers.
Such server source code are only developed by a few of therlaggworks. Of these, | have

14 essig (1999a, p.69)

15See above on page 25

16see for example Lessig (1998, p.666): He sees the non-lawalitied "as eactsubjectto law [...], each itself
an object of law’s regulation” (emphasis in original).

34

2.4 Technical Notes on the Analysis

included those of four networks in my analysis: Onet, EFdetlernet, and IRCn&t In the
case of the EFnet also, several server series exist whiateastoped and used in parallel.

In total, | have found the source code for approximately 2800ex versions. They are listed
in chapter 14 of the appendix. This server code was then eahfior «code» related features,
in single server versions and through a succession of vessio order to track changes such
as extension or addition of features, or their removal, atd/een different network versions,
comparing similar features with different design or impétation. These examinations were
largely done 'manually’, by reading the source code. Sorakrtieal help, especially for the
longitudinal analyses were applied. A short account oftleéstused is presented in chapter 13
of the appendix.

In addition to the server code, the source code of two bot® wgamined as well: the
Eggdrop user bét and the Undernet UWorld service Bot In both cases only one version
was examined.

Next to the source code, the second source of informatioheofRC were various docu-
ments, both from the networks themselves as well as fronr sth@ces. This collection has
not be done in a systematic matter, but rather as contina@aghk for interesting information
related to governance structures and events which couldsbetraced in the source code.
The sources used are listed in the bibliography. A probleth #hese documents was that
they sometimes were updated, and older versions not aledaly more; others disappeared
entirely. | have tried to only use those which are still asdge; but all used documents are
on file with me.

Notation
Finally here are some technical remarks regarding this work

DATE FORMAT — | have chosen here two formats: For a full date includingitng the format
follows the international standard date notatfprvhich is YYYY-MM-DD (four year
digits, two month digits, two day digit&) When examining the source code and doc-
uments, the various date formats were a continuous sourcendfisiort?, leading me
to use this notation. | have made one exception: when onlythmamd year were nec-
essary, | chose to write the full month name, followed by thary(e.g., "May 1995").
This occurs mostly in connection with the server code pagkadfere it is sometimes

17| have also examined features of a fourth network, DALnetfodnnately, only a few server versions were
available, so in this case my explorations rely solely orutieents available on this network.

8see below chapter 6.2.1

19See below chapter 7.4

201SO 8601 of the International Organization for Standariitira(ISO)

21See http://www.cl.cam.ac.uk/~mgk25/iso-time.html.

22Although most of these sources were written in English rtaethors came from many countries, so that all
kinds of date notations were used.

35

2 «Code» Governance: An Empirical Analysis

confusing to track the dates of the many versions, so in dodsvmewhat alleviate this,
| chose to put the date into a slightly more readable format.

"ALGORITHM” — Direct quotes from the source code, when several lineg,lare put into
a table-like structure called "algorithm”. The word prosieg software used for this
work?? offered this functionality, together with an automatic geation of a "table of
algorithms”, so that | made use of this feaftire

CODE QUOTES — Apart from the "algorithms”, short quotes of source codevall as other

text that appear verbatim in the IRC (commands, channel saate.) are set in the
typewriter font.

SOURCE CODE CITATIONS— The notation for quotes from the source code packages bas th
following format: enclosed in square brackets, the naméefsource code as listed
in appendix chapter 14, followed by the path to the file in thagkage and the file-
name, and optionally followed by a colon and the lines ingidefile. For example,
[irc2.8.21+CSr20/include/comstud.h:19-27] points toeb 19 to 27 of the file "com-
stud.h” in the the folder "include” of the source code paekége2.8.21+CSr20”.

23X 1.3.5, a front end word processing software for #igX typesetting system.
24The «code» constraint in this software was the difficulty ary inability to change the name "algorithm” into

something more appropriate. This would have necessitatkcket code change in bothyK and BTgX, a
task that | chose not to undertake for this feature.

36

Part Il

Empirical Analysis of the Internet
Relay Chat

37

3 The Internet Relay Chat

In this Part Il, analyze the Internet Relay Chat, a selfamiged and self-governed application
in the Internet. It may be not as widely known as the world wigd, e-mail or file-sharing
applications; still it remains an important applicationthre Internet, used by hundreds of
thousands of people at any time of day or night.

The Internet Relay Chat, or short IRC, offers its users a omado exchange text messages
in real time, both within a group of people, or between singers. Group conversations take
place inside of so-callechannels of which literally thousands can exist in an IRC network,
and can be shaped by its users.

The whole application is maintained and developed by velers, with no overarching
corporate entity or other single organization behind thBrareover, "the” IRC encompasses
thousands of independdRRC networksfrom small one-server 'networks’ to large ones made
up by up to 100 servers connected to each other. Each of tkeésenks form their own social
setting, with administrators and their helpers managiegstrvers and network, and its users
interacting by using the IRC network, contributing in varsovays to it, or causing disruptions
and conflicts which have to be remedied or resolved.

All these actions are mediated by the IRC «code», the IRGvaoft, which is developed
by the participants themselves. «Code» offers them a paleréans to shape their own
governance environment, to manage their common affaidt@oope with changing social
conditions. The main objective of this work is to examinestkcode» in its relationship to
and interactions with the social setting of these IRC nekwior

So what is the Internet Relay Chat? | have chosen to give ae-bartite answer:

e Section 3.1 begins with a hypothetical scenario where #ygssb become an IRC users
are outlined. Along the way, important concepts suchielsnamesndchannelsare in-
troduced. In addition, this section gives basic informatbout existing IRC networks,
such as size and growth.

e Section 3.2 provides thechnical foundatiomf the IRC: the IRC network architecture
and the IRC server and IRC client as its main components, ribt@qwols involved, as
well as the basic configuration settings of the software.

39

3 The Internet Relay Chat

e Although | mainly examine the technical structures and dyiesg, it is important to
shed some light on the social side of the IRC to understang@lrernance situation.
Section 3.3 offers a first glimpse by outlining the main sb@é&s: IRC administrator,
service administrator and coder; the IRC user, as well as dB€&ator and channel
operator.

This overview of the functional side, the technical struetand the social setting sets the
foundation for the examination of notable features and ldgveent with regard to the IRC
«code» governance in subsequent chapters.

3.1 The Functional Perspective — Using the IRC

3.1.1 A hypothetical user scenario

As a first introduction, | describe how a user connects to @&nBtwork, what basic functions
are available to her, and what she gets displayed on thenscrieeaddition to giving an
impression on how users experience the IRC, it gives me tpertymity to introduce some
basic concepts of the IRC, such as IRC client software, atlaniRC commands, etc.

There are basically four steps necessary to get involvediichat conversation on the IRC:
1. installing the client software and choosing an IRC nekvasrd server; 2. connecting to that
server; and finally, 3. entering and using the IRC.

Installing IRC client softwareThe first step in using the IRC is to acquire and install the
IRC client softwareThis is an program similar to web browsers or e-mail programffering
a user interface to the IRC and handling all necessary coiongarocedures and data transfers
to the IRC servers. IRC clients exist for many computingfplanst, and with different feature
sets; some offer a text-only interface, while recent onestgpaphical user interfaces.

Choosing an IRC networl@&n IRC network is a set of interconnected servers whichttoge
form an entity whose members can chat with each other. Irr dodeonnect to one of these
networks, one needs to find the connection information fag ohits IRC servers; this is
similar to finding an URL for a website. Most IRC client progracome with a default list of
servers to which one can connect. Other sources exist wihashde up-to-date information
about the IRC networks And not at least, many larger IRC networks maintain theinow
websites where current connection information on servansoe looked up.

Connecting to the IRCONce the IRC network and server has been chosen, the next ste
involves the actual connection procedure. The first thirag ghuser might encounter is the

1For Windows systems, mIRC (http://www.mirc.com/) is saidhe the most popular IRC client; for Macintosh,
Snak (http://www.snak.com/Snak.html) and Ircle (httpwiv.ircle.com/) are the most popular ones.
2Examples for such websites are http://irchelp.org/ anatttic.netsplit.de/.

40

3.1 The Functional Perspective — Using the IRC

rejection of connection. Many IRC networks have specifiggye$ regarding who may con-
nect, and from where. A common reason for these policieserosdhe number of clients that
one server can concurrently accept. Especially in larg@orés, servers of one country may
decide to reject clients from other countries (based on timeain name of the client), so that
the users of the network are more evenly distributed betwseservers of the network.

Once a server accepts the connection request, the useridastify herself by choosing a
nickname This is a pseudonym that every IRC user has to choose aniéisae to inside the
network. This nickname has to be unique inside the netwéknother user with the same
nickname already exists, the connecting user has to chamdbex nickname. Only when a
unique nickname has been found, the user is granted entng i®RC network.

Using the IRC Once entered, the IRC server immediately sends a numbeaxbfihes
which contain basic information about the network, the serand any other information that
the server administrator deems important, such as poitttérslp information, usage policies
etc. (figure 3.1).

*+x \Welcome to the UnderNet IRC Network, zyxwvu

*** global: File not found

*** |f you have not already done so, please read the new user information with /HELP NEWUSER
*** Your host is Amsterdam.NL.EU.undernet.org, running version u2.10.11.07(pre3)

*** This server was created Mon Sep 13 2004 at 21: 09:54 CEST

*x Amsterdam.NL.EU.undernet.org u2.10.11.07(pre3) dioswkgx bikimnopstvr bklov

*x WHOX WALLCHOPS WALLVOICES USERIP CPRIVMSG CNOTICE SILENCE=15 MODES=6 MAX-
CHANNELS=10 MAXBANS=45

+NICKLEN=12 MAXNICKLEN=15 are supported by this server

*** TOPICLEN=160 AWAYLEN=160 KICKLEN=160 CHANTYPES=#& PREFIX=(ov)@+ CHAN-
MODES=b,k,l,imnpstr

+CASEMAPPING=rfc1459 NETWORK=UnderNet are supported by this server

*** There are 56028 users and 81380 invisible on 35 servers

*** 100 operator(s) online

*** 459 unknown connection(s)

*** 49991 channels formed

*** | have 5009 clients and 1 servers

*** Highest connection count: 5026 (5025 clients)

**x . Amsterdam.NL.EU.undernet.org Message of the Day -

*** This service is provided by EuroNet Internet & Wanadoo - http://www.wanadoo.nl

*** Type IMOTD to read the AUP before continuing using this service.

*** The message of the day was last changed: 2003-7-10 21:21

*** on 1 ca 1(2) ft 10(10)

Figure 3.1: Initial messages when joining an IRC networkdéhmet, on Jan 6, 2004)

Once inside the IRC, there are three basic methods by whicdeaaommunicate with
others: channels, private messages, and CTCP messages.
3.1.1.1 Channels

The most important means of communication in the IRC aregoomversations insideghan-
nels, also sometimes referred to as chat rooms. Users enten’{'johannels, and then can

3For a detailed account of channels as seen by an IRC codeé¢a#@000b).

41

3 The Internet Relay Chat

submit text lines which are immediately sent to all other rhers of that channel. Every
line that a channel member sends to the channel is immegdisglayed by each members’
client program, leading to a stream of text lines which, t@@ce user, may appear somewhat
confusing:

<punky> nope

<deepee> You need logs. And proof of chan "ownership" and you need to persaude the irc

ops on the offenders server. A toughie.

<Bob_> Hmm, well looks like | will have to use my influence with BT to get ircop status.

*** BambiEyes (henrik@ppp01.prosalg.no) has joined channel #hottub

<BambiEyes> hi

<Bob_> obviously it will take sometime.

*** BambiEyes has left channel #hottub

<Bob_> Hi BamBi

<deepee> But that wont help unless they are connected through the bt server tho?

<deepee> Do we have any nicks/addresses to go by?
<Bob_> Yea but that way we could force a colide

Figure 3.2: Example conversation in the IRC channel "#Hjttu

The conversation inside a channel, as figure 3.2 shows, istsmoous stream of text lines.
Each message is prepended by the writer’s nickname. Chatatels messages are inter-
spersed in the conversation, distinguished by the othesages through a leading of three
asterisks ("***”).

In the example, a usdrenrik from the serveipppOl.prosalg.no with nickname
BambiEyes , can be seen to have joined the charttettub , and, after saying "hi”, left it
again.

Channels can have various properties, catlegnnel modesvhich alter various communi-
cation characteristics. For example, it is possible to deryy to most or specific users, or to
allow only chosen members to talk on the channel.

These channel modes are decided by the role oftla@nel operatarThis role is assigned
to the user who created a new channel, just by joining a pusi§anon-existent channel. This
means that any user, be it novice or long-time IRC user, canyatime open up new channels
in the IRC, and immediately become channel operator for¢chahnel. As channels are the
main communication structure in the IRC, later chapter$ examine its various properties
and uses.

3.1.1.2 Private Messages

In addition to channels, users can also send text messagatefyr to other single users or a
group. Some networks also allow users to send messagesiseadlin the network; but often,
this function is reserved to network officials such as the p@rator$ for announcements
etc.

“4For the role of the IRC operator, see below section 3.3.5 hagter 7.

42

3.1 The Functional Perspective — Using the IRC

Another important use of the private message mechanisne isitbraction with automated
clients, such as "bot§8’and "services®. These connect to the IRC as clients, identified by a
nickname, like (human) users, but are programs or scriptshwbrovide diverse functions.
Users send commands to the bots via private messages.

3.1.1.3 CTCP (Client-to-Client Protocol)

A special method of messaging is implemented as an exteobpivate messages. Basically,
the Client-to-client protocol or short CTCRlllows two IRCclient programsto exchange
command requests and responses with each other, usinguhgepnessage mechanism as a
transport medium. To IRC servers, these requests and respappear as if users exchange
text messages. But on the client software sides, the reguieserpreted, and a response sent
back.

One of the main uses for the CTCP mechanism isestablishmenof a thedirect Inter-
net connection between two IRC clients outside the IRC netwealled the DCC (Direct
Client-to-Client) mechanism: once established, a DCC eotion is not relayed over the IRC
network any more, but two IRC clients connect to each other the Internet, circumventing
the IRC network altogether. With such a DCC connection, sisan chat with each other
without fear that an IRC server might eavesdrop 8nat exchange large files between the
IRC clients instead of being relayed over the IRC networko#er important use of DCC is
the interaction with IRC bots

3.1.1.4 IRC Commands

User interact inside the IRC through commands. These comsare entered in the same way
as normal text messages. So in order to distinguish betvegémessages and commands, the
latter are prepended with a slash (/).

For example, a user joins a channel by issujogq #hottub , leave it with/leave
#hottub , or sends a private message to another user/mgly WildThang

Other commands allow the user to request information froensifstem: For example, in-
formation about other users is retrieved with tihwno or /whois commands. Thdist
command returns a list of channels with basic informatiooualeach one. The following
figure 3.3 gives an example for such a channel%ist

5See below chapter 6.2.
6See below chapter 6.3.
’See Undernet-User-Committee (1997a)
8The original document therefore claims it to be "the ultienat secure chat connections while still in an IRC
oriented protocol” (Rollo (1992)).
9See below chapter 6.2.
0The first column after the three asterisks show the chanmeknasually prepended by a hash mark ('#).
After the name, the current number of participants are shémilowed by the topic string which is supposed,

43

3 The Internet Relay Chat

*hk dde_ce_nu_ 2 salutare

*kt ¥ landra 2 Manchester United RUlezzzz

*%% #lovebird 10 ,1welcome ia,lZToia,qLoveBlrd ia,SEnJoy Vour Stay Here

*kx Fdoar ‘noi 1 CCy]

ok #K-Kanal 1 ?

ek drldipeopl 1 Alci 1ntru cine vrea--cu injuraturi si cu ce vreti voi---Channel made by
+0s0sS

*kk Fgogo 4 bagoaaaa tigani din mikro 79797779V

Aok #MANSON_NI 1 !4,1 | [DAVID]I !11,4 MANSON_NIGHTYWISH_SEVEN@YAHOO .COM 54,1 | [DAYID]I

*kk Foilpunx 2 First they ignore you, then they lough at you, then they fight you, then you
+Win.

bk deagle_33 7 CINE RADE LA URMA E MAI GREU DE CAP :)))

*kk Fanime_x 1 bien benido anime_x muy pronto tendremos descargos de series

Figure 3.3: Snapshot of a channel list in the Undernet

Yet other commands are reserved to privileged users, suchamel operators or IRC
operators, and help with their administrative tasks.

As a rule, all user actions in the Internet Relay Chat aréateitl with commands, some of
which are examined in detail in later chapters.

3.1.2 Size and Growth of the IRC

Before | describe the main technical concepts, some statistata on the size and growth of
the IRC since its inception in 1988 should give an impressiothe rank of the IRC among
the Internet applications.

There are a number of indicators which can serve to judgeiteeo$ the IRC: the number
of users and channels, the number of different IRC netwankd the number of servers, both
in the IRC as whole, as well as in each IRC network. Unfortelyathere is only scattered
data for the first ten years of the IRC. For data from 1998 aretlare a some websites which
offer systematic datd although their focus lies on current usage, not long-tetatissics.
Still, from what is available, | can offer a sketch of the s@®l growth of the Internet.

Figure 3.4 shows the number of users and servers early ilRi@distory. | have collected
these from various sources, such as "history” documentgjedisas some IRC mailing list
messages, so the data may be of varying accuracy, and séyue give an impression of the
size and growth in these times.

This data indicates some characteristics of the early IREhé first two years, the (at that
time only) IRC network was apparently used by those who asan server. Therefore it can
be assumed that the IRC users constituted a homogenedusgrigcommunity. Then, in the
first half of the 1990s, the usership began to show a fast grauaich continues to this day:
from the 400 users in 1991 through about 5000 in late 1994centéy more than 1.3 million

but obviously not limited, to give some information about thannel topic. This snapshot was taken at the
same session as the initial server messages shown above @id), and therefore shows a list of eleven out
of 49991 channels.

H1see for example http://irc.netsplit.de/, http://wwwiém.com/ircstat/.

44

3.1 The Functional Perspective — Using the IRC

Date Users Servers Comments Sources
1988-08 - 1 first irc server (1)
1990-05 - 100 dropped down again soon (1), (2)
1990-07 12 38 source (1) says: on "average" (1), (2)
1990-09 — 117 2)
1990-09 4 86 same source, different numbers? (2)
1990-09 — 12-18 backbones | backbones are US only (5), (6),

117 servers (7)
1990-10 - 15 backbones | US only (8)
1990-12 19 backbones US only
1991-01 300 — gulf war fame (1), (2)
1991-03 135 69 in US, 66 non-US (2)
1991-04 240 median number (2)
1991-10 399 120 44 opers; users hit 500 at one time | (2)
1992-03 606 — (Nystrom 1993)
1993-04 2300 - (Nystrom 1993)
1994-07 — 188 EFnet

(irc-20040107/server.list)

late 1994 5000 - (2)
1995-10 | 15000 — 2)

Sources: (1) Stenberg (1998); (2) Rose and lan (1999); (SeRdelen (1990-09-08ackbone Routing 9/7/90
Mailing list IRClist (1991) (6) Lindahl, Greg (1990-09-18provisional backbone for eris-free ndfailing list
IRClist (1991) (7) Lindahl, Greg (1990-09-2Qris-free US net backbone list, one chankfailing list IRClist
(1991) (8) Rose, Helen (1990-10-2Bpackbone plan 23 OctobeWailing list IRClist (1991).

Figure 3.4: IRC growth from 1988 to late 1995

users worldwide on over 400000 chanAgls

Until 1990, there was only one network, later called the "Offer the 'original IRC net).
In September 1990, a dispute between the administratorn® ladsplit of the Onet into two
networks, of which only one, the EFnet, survivédFrom 1993 on, parallel IRC networks
appeared: the Undernet (since 1993), DALnet (1994), antRBaet (1996); for some time,
these four constituted the 'four largest’ networks.

From mid-1995 on, other networks also fornrfedOne source has a count of 88 active
networks in October 1998, with 5 "main” networks (>10000mss&ach), 10 "big” ones (1000-
5000 users), 16 "medium” (100-999) and 57 "small” ones (<86rs¥°. In June 2001, the
same source lists over 300 networks. Recent numbers givara 06679 networks in May
2003, and 2428 networks in January 2605

nttp:/lwww.searchirc.com/networks (2005-01-08)

13see also below chapter 8.2.

4Some of these are: AUSTnet, Galaxynet, NewNet, WebCha6)] @uakenet, RelicNet (1997).
15Source: http://netsplit.de/networks.19981013/ (20042Q)

®nttp://searchirc.com/ (2003-05-16)

nttp://searchirc.com/ (2005-01-08)

45

3 The Internet Relay Chat

3.2 A Conceptual View of the Technology of IRC

This section offers a conceptual view on tteehnologythat constitutes the Internet Relay
Chat. The technical capabilities determine what can be dotiee IRC, and they therefore
define its governance properties. This affords a basic stal@ting of what happens on the
technical level.

A working model of the IRC from the technical perspectiis presented, including:

e The (technical) "polity” of IRC: A structural descriptiorf the elements that constitute
an IRC network: IRC server, client, user bot, and service bot

e The "politics” of IRC: A processual view of the IRC networkjttvthe IRC server as
main component

e The "policy” of IRC: How policy objectives of the IRC settirage implemented in the
software. | will concentrate here on the means of how an IR@iadan change the
workings of the IRC server code, and thus influence its «cpddéisy implementation.

3.2.1 "Polity”: Structural Overview of the IRC

OneIRC networkis a set of IRC servers, interconnected in a specific way (t@y and
sharing data (data distribution). EatfRC server,a node in the IRC network, is a software
program running as a process on a host (a computer connedteel internet), and managed
by an IRC administrator. Another software, tHeC clientis employed by an IRC user to
connect to one of the servers in order to communicate witarattembers of that network.

A special case of IRC client is dRC user bot Users employ a bot to automate specific
tasks executed upon specific events. A special case of anéR@rsbut similar to an IRC
user bot is thdRC service bat It automates specific tasks, such as channel or nickname
registration; but in contrast to a user bot, a service bawsy(privileged) server status by the
other servers.

Figure 3.5 shows the basic relationship between thesassntit a small IRC network with
three servers and two users/three clients.

18This chapter concentrates on those concepts and strugnpestant for the examination in subsequent chap-
ters. For a detailed account of the technology behind thefl@@ actual IRC coders, see Oikarinen and
Reed (1993), and Kalt (2000a,b,c,d).

46

3.2 A Conceptual View of the Technology of IRC

IRC admin IRC server

oy

IRC networlke

IRC wseéy;
IRC client
IRC user
service (RC client
IRC user bo , e ¢
admin service bot

Figure 3.5: Elements of an IRC network

3.2.1.1 IRC Server

The server forms the backbone of IRC as it is the only compafiéime protocol which is able to
link all the other components together: it provides a pomivhich clients may connect to talk to
each other [IRC-CLIENT], and a point for other servers to nent to [[RC-SERVER]. The server
is also responsible for providing the basic services deflmethe IRC protocot?

The IRC server is the central component of the IRC networkelves as connecting point for
the clients, and relays messages to the other servers andscli

Technically, the server is a process, running on a host @ied¢o the Internet. As a server,
it waits for incoming requests from the connected clientd ather servers, process these
requests and then returns the results to the appropriate aise servers. It also maintains an
up-to-date system state of the entire network, includingtaf users, channels, other servers
in the entire network. In order to keep this information ewtr all changes made by one server
are immediately propagated to all other servers.

Section 3.2.2.2 below presents a processual view of theserv

3.2.1.2 IRC Client

A client is anything connecting to a server that is not anotigver. [...]

User clients are generally programs providing a text basgdrface that is used to communicate
interactively via IRC. This particular type of clients idef referred as "users?

IRC client programs have already been briefly introducedeittisn 3.1.1 above. They are
programs which give the user access to the IRC, similar tokalwewser giving access to the
world wide web. IRC clients exist for many computing platfe?!, and with different feature
sets. Some offer a text-only interface, while many have plgcal user interface.

19K alt (20004, pp.2-3)

20Kalt (20004, p.3)

2For Windows systems, mIRC (http://www.mirc.com/) is saide the most popular IRC client; for Macintosh,
Snak (http://www.snak.com/Snak.html) and Ircle (httpwiv.ircle.com/) are the most popular ones.

a7

3 The Internet Relay Chat

Technically, IRC clients manage the connection to an IR@egetranslate the user com-
mands into messages according to the IRC client-servenqBt, and send them to the con-
nected server. The responses from the server are thenydidpia the user. One important
point here is that IRC networks often change details in tt@inmand and feature set, leading
to changes in the protocol. IRC client developers theretorginuously adapt their software
to cope with these changes.

3.2.1.3 IRC User Bot

With IRC client programs, users interact directly with tfQ network, sending commands
and messages, and receiving them. But these direct useadtitmis can be automated,
recorded into or written as programs or scripts which thereaecuted by the user to achieve
some outcomes. In the IRC, client programs which allow tlex tesautomate tasks are called
IRC bots

Such automated tasks began with the introduction of a segifécility in a popular IRC
client, ircll?3. Created in 1989 as first independent IRC cfirihe developer Michael Sandrof
included the ability to create and run scripts: Users wrigziecession of commands into a
text file which then can be executed. Also included are featlike variables, parameter
substitution, and most importantly, the ability of a sctgpact on a message received from the
connected IRC network.

As simple example, the following line changes the defauitfier a/join message:

fon "join + Jecho $0 enters cavern $1 25

This rewrites the message before it is displayed to the tesgligcing the placehold®0 with
the name of the user who entered, &idwith the channel name. So, the /join message on
line 5 in figure on page 42 on line 5 would be rewritten from

+x+ BambiEyes (henrik@pppOl.prosalg.no) has joined channel # hottub
into
+x+ BambiEyes (henrik@pppOl.prosalg.no) enters cavern #hott ub

The/on scripting command not only reacts on command messagefdike in this exam-
ple, but allows for sophisticated pattern matching on incgmessages. So while the above

22See below section 3.2.2.1.

233See http://www.irchelp.org/irchelp/ircii/

24The server software versions also included a IRC client qammgwhich offered a basic functionality without
the advanced features of ircll and later developed IRC wdien

25File [irc2.5.1.bu.08/clients/ircli2.02/script/cavériine 6.

48

3.2 A Conceptual View of the Technology of IRC

is a very simple example, the scripting facility of the irclient give users a powerful tool to
shape their IRC environment, automating all kinds of tagBsnsequently, all but the most
simple IRC client programs nowadays offer some kind of sicripfacility similar to that of
the ircll.

The scripting facility in IRC clients is geared towards th&eractive use, but another class
of bots exists which can be seen as IRC bots in a more narrogeserhese are programs
which are continuously connected to the IRC, waiting on samegsages to initiate a script.
This scheme is similar to servers, like the IRC server; buR&sbots connect to the network
as an IRC client, they have no special capabilities (suciR&dervers do) beyond that of
an IRC client. Still, their programmability and other felasi makes them a powerful tool for
users and allows them to actively shape their IRC environm@hapter 6.2.1 examines one
specific use of such bots, where users employ them to chaeg#ethult channel ownership
policies of the network.

3.2.1.4 IRC Service

Unlike users, service clients are not intended to be useduadnnor for talking. They have a
more limited access to the chat functions of the protocollengptionally having access to more
private data from the servers.

Services are typically automatons used to provide some dfirsgrvice (not necessarily related
to IRC itself) to users. An example is a service collectiragigics about the origin of users
connected on the IRC netwofk.

Services are a kind of cross-section between IRC bots and#&rers: Like the former, they
are automated programs which provide some special fursctiom contrast to bots though,
services enjoy a status in the network similar to seAers

Functionally, services are processes similar to serveaing for a request which they then
process and send a reply. But in contrast to servers, thevederonly a few specific tasks that
they were created for. For example, some networks havdlegtchannel service: a central
point where user can register new channels to reserve thie(agprivilege) to manage them
over a longer period. There is one single point, the serwidech proceeds all managerial
tasks relevant to the channel service. Its maintainer &emihy one in the network who can
alter its working. This is in contrast to all other IRC furaois and services installed by the
whole set of IRC servers in the network in a distributed wagrviges constitute a single
centralized point of power in the IRC network.

Examples for services (examined in detail later on) arerdoke and channel registration
service$®, and the centralized network control implemented by the tt\gervice®.

26Kalt (20004, p.3)

2TFor detailed information, see for example http://www.éasces.esper.net/docs/1.html (2005-01-15).
28See below chapter 6.3.

29See below chapter 7.4.

49

3 The Internet Relay Chat

3.2.1.5 IRC Network

From the onset on, the IRC has been programmed to be a mudarsetwork which hides the
fact that multiple servers may be involved by posing to thentlas a "virtual” server: from
the viewpoint of the client, the server network behaves ¢alinas if there is only one server
present. This certain setup of different computers, pseesr (more technically) automata is
called adistributed system

Distributed System

In a distributed system, a number of components, connected a network, provides
services in a way that to the users it appears to them as ogéesemtity. This means that the
distribution is hidden from the user, in contrast to normatworks, where users are aware
of the different components, such as hosts or proce8ses.

Distributed systems are very common in the Internet, becafisn one computer does not
suffice to provide a specific service for many users. A classamnple is the Domain Name
System (DNS) in which the resolution process of domain nantednternet names (as well
as other Internet-related data) are maintained and semedistributed manng.

Two characteristics of the IRC server network are impontegéarding the code governance
aspects: Théopologyanddata distributionconcept chosen.

Topology

The IRC servers are connected to each other in a tree topaomyore technically, an acyclic
graph. This means that the server are connected to eachsothi®at there is exactly one path
to any other server in the tree (see figure 3.6).

Figure 3.6: Tree topology

30See "Free On-line Dictionary of Computing (09 FEB 02)", ading to http://dict.die.net/distributed system/
(2004-03-04).
31See below chapter 8.1

50

3.2 A Conceptual View of the Technology of IRC

A tree topology is often depicted in form of a tree, which gitlee impression that the nodes
form some kind of hierarchical relationship to each othendAierarchies indeed normally
form a kind of tree shape, with the most powerful entity on, iy next powerful entities on
the second level, and so forth. The probably best known spording hierarchical structure
in the Internet is the network of name servers in the Domaim&l&ystem (DNS) which
implements an hierarchical structure, with the so callebtiserver” on top, the "top level
domain server” and "country code top level domain serverthensecond level, and so fofth

But equating the tree topology with an hierarchy is somewhigteading, at least in the
example of the Internet Relay Chat. Here the importance eframde is not only given by
its position in relation to other nodes in the network, butiépendent on a number of other
factors, such as connectivity (the data speed of its coiomecin the Internet, and in relation
to the neighbor nodes).

In addition, the IRC has implemented mechanisms which altova dynamic reshaping of
the network in case of failure of one node, or disruption obanection between two nodes.

Diemen
Santa
Clara @ NLEY
SaltLake @
ks NewYork
-R.NY.US

anDie
-go.CA.
us Amste

ashing' i
ton- LEU
R.DC.U @
|n;tf:rr‘1 Toronto @
DC.U Arlington. ON.CA
VA.US
Undernet server network.

Based on http://gid0ze.net/irc-map/undernet_graph.gif (file date: 18-Nov 2003, fetched 5-Feb-2005)

ontreal]
QU.CA

Figure 3.7: Undernet network (around 1993).

Finally, and probably most important, is the relationsHigsonodes defined by the specific
form of the distribution of the IRC data.

Data distribution

The data of the Internet Relay Chat is comprised of the stateeavhole network with regard
to its connected servers and users, and the channels. Thissdiuplicated and maintained

32See also chapter Section 8.1

51

3 The Internet Relay Chat

in every IRC server; every IRC server holds the actual sthteeentire network which is
constantly updated by sending every state change to evergrse the network.

While at first sight this seems to be very wasteful in termsaridwidth, this design was
chosen exactly in order to save as much bandwidth as possitiehe time of creation,
bandwidth was a precious resource, especially since thend®®@orks run on university or
company hosts, using their bandwidth. Thus an most ecoradms$e of this bandwidth was
important. The IRC uses the network state information ineotd send the main bulk of
data, the user messages, only to those servers where thesselels of this message (channel
members, receiver of private messages) are connected to.

The design chosen for the IRC server network is a tree togabegwork, with the state
information for the whole network kept current in every degerver of the network. We
will see in chapter 8 that this design has an important infteeon the constitution of the
social organization in the IRC: Since every server has theesdata, their IRC administrators
are more or less on equal standing. There is no single sengroap of servers (and their
admins) who control crucial data, and thus impose rules emther servers.

3.2.2 "Politics™: A Processual View of the IRC
3.2.2.1 The Client-server architecture

The basic architecture between IRC client and IRC servdraga in figure 3.8. This archi-
tecture is known as thelient-server architecturg.

IRC IRC
user adwmin
Request
=
-
RC RESponEE RC
client server

Figure 3.8: Basic IRC client-server configuration

33Tanenbaum (1989, pp.455-6)

52

3.2 A Conceptual View of the Technology of IRC

Client-server architecture

This common architecture of many applications in the Inééia based on the principle to separate
the requester of a service (ttaient) from the provider of a service (thgerve}, and to formalize
the communication between them ircleent-server protocol In this architecture, the client always
initiates the communication by sending a request, whilestr@er never initiates, but only responds
to the requests. Often, in order to process the request, romiintenance tasks, the server cact @
as a client towards another server, which then constitutesgarate client-server connection. Inside
one such connection, only the client acts, and the serveorass.

Common applications that use the client-server architectoclude the World Wide Web (browser
as client, web server as server), e-mail, ftp (file transfand the IRC.

In the case of the IRC, the principal design of the IRC clieetver protocol has been
published two times as Request of Comments (RFC) of thernletéingineering Task Force:
once in 1993, when only one IRC network, the EFnet exiteohd once in 2000, by an IRC
coder associated with the IRCFetWhile the principal design is the same in both documents
and reflects the basic design of all IRC networks, the spsdificommands, messages and
parameters differ from network to network.

3.2.2.2 Inside the IRC server process

Incoming IRC client requests are basically handled in teteps: receive, parse/dispatch, pro-
cess, and respond. Along these lines, the internal daiistapdated, and update messages
sent to the other IRC servers:

RECEIVE THE REQUEST— The server maintains a incoming message queue which is pro-
vided by the Internet interface of the operating sysfemhe server polls this queue in
regular intervals, and reads in each received request tortheef processed.

PARSE/DISPATCH — The read-in request data is a sequence of characters wdmsdo e in-
terpreted according to the format defined in the IRC cliemt«sr protocol: The parsing
function splits the request data into its functional congrus, such as the message iden-
tifier, the parameters provided by the user, the identifith@fequest source, etc. Based
on the identifier, the request is dispatched to the apprepiigction. For example, the
message identifidtlST , corresponding to the commafist |, leads to the function
m_list() being called in the server.

PROCESZRESPOND — The function called by the parser does the actual work afdinemand
processing, checking for privileges, changing the appatg@ata structures, sending

340ikarinen and Reed (1993)
35Kalt (2000c¢)
36In BSD Unix implementations, the so called "socket” inteda

53

3 The Internet Relay Chat

request for data updating to the other servers, notices ssages to other users, and a
response to the user who sent the command. Ifigie example, the function would
access the list of channels and send it back to the user.

After handling a request, the server processes some mamtertasks (such as checking if
the connections to other servers are still active, etcd,then continues with the next request
in the incoming queue.

Figure 3.9: Model of the server process

3.2.3 "Policy”: IRC Server Installation and Configuration

An important step in the «code» governance setting of a sexv@w it is installed and set up.
Here the IRC administrator makes important decisions ogdivernance characteristics, such
as which users are allowed to join the IRC through that sewteat powers the IRC operators
acquire, etc.

| sketch the steps leading from the IRC server source codertmrm@ng server process.
It is assumed here that the IRC admin has set up all necessamggpisites for the server
installation, such as choosing a host, making sure thatdfievare development tools (C
compiler, linker, software libraries) exist, and so on.

The entire process can be split up into two phases:

e Theinstallation itself which includes configuring of the source code, and subsgque
compiling and linking which results in the binary executaptogram file of the server.

e Theserver configurationwhere configuration files are edited, and startup options de
termined by the administrator.

54

3.2 A Conceptual View of the Technology of IRC

3.2.3.1 Installation of the IRC server

The installation of the IRC server begins with the choice ebarce code package and possible
patches (see below) and ends with an executable binarygoige, suitable to be run as IRC
server process.

Installation process |

choosing applying configuring the compiling server
version patches source code and linking binary

program

! \
#define direct code v

\ directive changes

Figure 3.10: IRC server installation steps

A description of each of these steps follows.

Choosing the source code version

In the first step, the IRC administrator chooses the speétfitdource code package. Usually,
she can choose between several versions and sometimeseaivereb versions of different

code serie¥. The choice affects what specific features the admin can mekitable on the
server.

In the IRC, the general code policy has been to make new verbiackward compatible, to
assure that a new version can interoperate with previowssores. Therefore, in IRC networks
one can observe that some admins choose not to update tivelr sea new version, because
the older version is perceived as being more stable, or Beaaiuthe existence or absence of
some features.

The same can be said for different server series. The prevat@mple is the EFnet, where
two series (called "+CSr”, and "+th”, which later mergesoitihe "hybrid” series¥ are avail-
able; the servers in these series are interoperable, arefdhe can be used concurrently in
the EFnet.

Applying patches

In addition to series and versions, there are often a nunflser called "patches®.

37Server code developed by different individuals or teams.
38See below in the appendix, chapter 14.2
39See http://en.wikipedia.org/wiki/Patch_(Unix) (2005-02) for further details.

55

3 The Internet Relay Chat

Patches

Patch files are text files which contain textual differencetsvieen two files, or two sets of
files. When applied to one file (or one set of files), a new fildil@set) incorporating the
changes is created.

The main purpose of this mechanism is to distribute smalhgha for a larger source code
package without having to redistribute the whole packadpe distribution of small changes
can then even occur in email messages, or in patch files winicbamsiderably smaller than
the package itself.

As additional benefit for the IRC, besides the small size t¢ipéles, these patches allow
the IRC administrator to install additional functionadsi distributed through these patches.
Therefore, patches are a method for coders to distributerggdtfunctionalities not incorpo-
rated into the main distributed package, a method for IRCiaslto choose among different
functionalities offered by the available patches.

Configuring the source code

Before the source code is compiled and linked into a binagcetable file, the IRC admin
configures the source code. This serves various purposethenleast to determine the com-
pilation and linking settings specific to the computing eoriment of the server, (software
tools, libraries etc.). Besides the general configuratie@-specific options are present, some
of which are necessary to run the server, and others whiatgehthe functionality of the IRC
server. These configurations include enabling or disaldfraperator privileges, activation of
logging facilities or of special commands. Admins configtire source code either by run-
ning special configuration scripts provided with the sowmde package, or manually edit the
appropriate files.

Configuration settings are options which are predefined égtder. It is a means to com-
municate with the person who installs the software, to preskoices affecting how the re-
sulting program works. These choices can be simple techadzgtations to the computing
environment, or the prospective uses of the software, bheh@re also governance choices of
the IRC as well.

In the code, several configuration mechanisms exist, éiftameans of entering the options.
One of them is thé&define directivewhich is extensively used throughout the IRC server code,
so that | find it important to mention here. The other isdirect source code changkecause
in programs where the source code is available, it offersattgeest possible means to change
the workings of the software, including its governance abtaristics, limited only by the
interoperability with the other components of the IRC netysuch as the other servers and
clients.

56

3.2 A Conceptual View of the Technology of IRC

#define directive

The #define directive is a common construct provided by theo@r@mming language. It
allows to associate a identifier label with a specific replaeat string:

#def i ne label replace-string

This directive is evaluated by the C preprocessor (a parhefdompilation process) by
simply replacing everjabel with thereplace-string in the source code before the
compilation process begins. This is used for example to tefeonstant values in the source
code with a name instead of a value, let's say a hypotheBcgNunber instead of the
valuel234567.

In addition, the #define directive can also be given paransetdich are substituted when
the directive is evaluated, and accompanying construatk as#i f def label (‘evaluate
if label has been #define’'d’) allow the conditional evaluation of eperts.

An example for the use of the #define directive is shown betoehapter 4.2.3: the 'max-
users-per-channel’ directive determines the number akubat can concurrently use a chan-
nel. The source code as distributed sets this valdd®tdut the IRC admin can change it to
any other value she sees fit.

The #define labels do not only serve as replacement mechanisgether with the ac-
companying conditional directives such as #ifdef, it abaw activate or inactive parts of the
source code by bracing them with conditional directivesohidepend on the status of the
#define label (either defined or undefined). For example, enees version includes a di-
rective#define OPER_KILL , which by default is activated. In this state, the IRC server
process allows IRC operators of this server to ig&ile command¥®. But if the IRC ad-
min decides to revoke her own IRC operators the privilegss$ae user /kills, all she has to
do it to replacetdefine OPER_KILL with #undef OPER_KILL , thereby deactivate the
respective source code parts.

As such, the #define directive is one of the main instrumentdlow the IRC admin an
coder-provided way to change the «code» governance betaitite IRC server program.

Arbitrary source code changes

In difference to the #define directive, changes of the socode itself allows the IRC admin
to incorporate changes which were not made by the coders.cAagges can be made, and
the admin is limited only by her knowledge of the code, anditheroperability with other
IRC servers. Regularly voiced concerns over "hacked setweiRC mailing lists and other
documents indicate that this option appears to be useddngiyu

40See chapter 5.1 for the explanation of tkdd command.

57

3 The Internet Relay Chat

Compiling and Linking

When the server has been configured, the source code is haessed to create a binary
program file which then can directly started. This procegsncludes the preprocessing and
compiling the source code files to get object files, and to &ithlobject files and libraries to
get the final binary program.

3.2.3.2 IRC server configuration

Once the installation of the IRC server is completed, the He€er must be provided with
some configuration information. The main location for thes#ings is thdarcd.conf
configuration file. Additionally, some settings can be pdad upon startup of the IRC server..

Configuration lines inthe i rcd. conf configuration file

The central place for the configuration of the IRC server &sitbd.conf configuration
file. This file contains all the settings necessary for the IR€eesuch as the servers which it
can connect to, which client connections to allow and wheacteject, as well as information
about the server itself.

The file itself is a normal text file which contains so call@@hfiguration lineg(or short
config line§. Each line represents one specific setting, such as infammabout the server
and the administrator, a list of other IRC servers which maynect to this one, or to which
the local server may connect, users who may connect, or véhbbaamed from the server, etc.
Here is an example for a config line:

M:BUCSD.BU.EDU:* :Boston University Hoopy Test Server:6667

This example is an M-line (defined by the first letter; thedetM’ stands for ‘'me’, i.e. the
server itself), and defines the name of the IRC server. Paearfirelds are separated by colons;
so this line sets identifies the host as "bucsd.bu.edu”, Wigh(self-chosen) name "Boston
University Hoopy Test Server”, and the default port on 666¢# ¢third field with the asterisk
is not used).
Table 3.1 on the facing page lists the main config lines of R@ $erver version 2.141
Config lines roughly fall into three categories:

¢ Information These config lines contain information about the servah 1 the name
of the IRC server, or some administrative information sushh& administrator’s per-
sonal details.

e Server-server The main configuration lines in this categories are the dleataC/N
lines. They determine to which server the local server cameot, and which other

4IThe oldest IRC server version for which | have the source evddable.

58

3.2 A Conceptual View of the Technology of IRC

‘ Name‘ Label in the source code ‘ Category ‘ Description ‘
A CONF_ADMIN Information Administrative information of the server
M CONF_ME Information The server's name
C CONF_CONNECT_SERVER Server-Server

Sets up connection to other servers (toget
with N-line)

her

N CONF_NOCONNECT_SERVER Server-Server

her

Sets up connection to other servers (toget
with C-line)

I CONF_CLIENT Client-Server Authorizes clients to connect

O CONF_OPERATOR Client-Server | Authorizes IRC operator

K CONF_KILL Client-Server Kill user line

Table 3.1: Configuration lines in server version irc2.1.tt(Q989)

servers may connect to the local server. It is used to deterthie network structure of
the IRC network, i.e. which server are connected to whiclesth

¢ Client-server These lines affect the ways that IRC clients can interath tie IRC
server. For example, the I-lifledetermines which user groups are allowed to conne
to the server, while the all users matching a K-fthare denied entry. The O-liffe
authorizes a user to gain IRC operator status.

Configuration lines are meant to let the IRC admin decide att@uway how the IRC server
'behaves’, and is therefore an important governance mesimanside the IRC. In subsequent
chapters, | will outline the «code» governance feature®woifesof these configuration lines.

Startup options

Finally, next to the configuration files, some settings carptmided to the server process
upon start-up. These settings override equivalents maiihe iimstallation process, or those in
corresponding config lines, such as the location of the cordtgn file, specifying the debug
level, and others. In IRC servers, all important settingsdone in the configuration file, so
the startup options play a minor role.

3.2.4 Technical environment and code distribution

The ircd server code was written in the programming languader hosts running Unix
operating systems. Both language and operating systenasiean and are readily available

42Regarding I-lines, see the subsection on K-lines and klinehapter 5.2.1
43See below chapter 5.2.
44See below chapter 7.1.

59

ct

3 The Internet Relay Chat

both as technology (compiler, linker and development emvitent; computers running an
Unix operating system) and as knowledge (such as books dredt wiformation sources).
This means that there have been and are always a large paabptiepvho can understand the
code, and can make changes to it. It is save to assume thgtI®@Iserver administrator at
least has a basic grasp of the inner workings of the servamymwao contributed to the ircd
source code indeed have also at one time been administeasenyer, or serving other official
position in the IRC community.

The IRCclient code was initially written by the IRC creator Oikarinen adlyend at first
distributed together with the server code. Later on, othave created and maintain indepen-
dent IRC client software in many computer languages andif@rsie computer platforms, so
that nowadays the prospective IRC user can choose from avardaty of IRC client software.

A very important choice of basically all IRC server code, amahy of the IRC client code,
is that they are distributed apen sourcesoftwaré®. This is important because in this way,
anyone can take the IRC code, make modification of it and ruevalRC network with it.
This is a situation that does normally not arise in other cgmmrce software, because the use
of the software is more detached from its development. Hexehoice of open sourcing the
IRC leads directly to the power of anyone to open up new IR@ais, and implement new
features into it.

3.3 Main Social Roles in the IRC

Besides the technical structure, another important paatte€hno-social setting are the roles
that individuals can assume. In the IRC, we can roughlyrstish two kinds of roles:

e Four roles arising from the general setting: Tdwslerwho designs and maintains the
software involved, especially the server code; fRE€ administratorwho sets up, con-
figures and runs the IRC servers; iRC user who additionally may maintain an IRC
user bot; and th&RC service administrator

e Two roles defined by the technical design: T¢tennel operatarwho manages and
controls a channel; and tHRC operator a administrator appointed official who has
maintenance tasks.

As these roles play an important role in my explorations mrgmainder of this work, they
are outlined here. Table 3.2 lists the main roles in the h@eRelay Chat.

“SFor the events which let the IRC fall under the GNU Public hise, see appendix chapter 12.7.

60

3.3 Main Social Roles in the IRC

Social Role | Description |

IRC administrator (IRCadmin) | Setup, configuration, and maintenance of an IRC sefver

IRC service administrator Set up, configuration, and maintenance of an IRC ser-
vice bot

Coder Design and implementation of the IRC software

IRC user Participant in an IRC network

IRC operator (IRCop) Daily management tasks of an IRC server and in IRC
network

Channel operator (chanop) Configuration, management of and control over an IRC
channel

Table 3.2: Social Roles in the IRC

3.3.1 IRC administrator

The most important role in the IRC is that of the IRC admirigir. Not only does she set up,
and configure an IRC server, which gives her power over thesand in the IRC network, but
she also is the one who contributes or organizes the negdssaware and bandwidth for the
IRC. Without the contribution and the work of the IRC admirasors, there would be no IRC
network, because there is no overarching organizationwprovides the necessary equip-
ment and bandwidth. This fact also makes the IR&I&-organized settinglhe existence of
the IRC network solely depends on the voluntary contrimsiof the IRC administrators.

The main tasks of IRC administrators, besides the provigfdrardware and connectivity,
is the maintenance of the IRC server software: to set up anfigtwe it, to install possible
new versions and patcH€sand to secure its trouble free functioning. For the latiek} the
IRC administrators appoint IRC operators (see below) gshel

In the network, the IRC admin is part of the group of adminsiciwliorm the highest 'po-
litical’ body of the network, setting up policies, and in geal making all decisions regarding
the network at large. The technical setting gives all IRC imiktrators roughly the same de-
cisional powet’, so that the institutional form of this group varies betwé®a network, and
is not predetermined by the technical structure.

3.3.2 IRC Service administrator

The IRC service administratomanages an IRC service Bjtand has controls the source
code and program of the service bot. This is important becauservice ofterentralizes
functions in an otherwise decentralized IRC network. Sangea in the service are much

46See above section 3.2.3.1.
4"Topology and data distribution; see chapter 8.
48See above chapter 3.2.1.4 and below chapter 6.3

61

3 The Internet Relay Chat

easier to accomplish than changes in the IRC server, forhmévery server would have to
be changed. On the other hand, the service administratardmsal control over the service
functionality, whereas normal IRC functions are contmlla a distributed manner by the
admins and operators.

3.3.3 Coder

Like in other open source software projects, the IRC codesldgwment always needs the
infusion of people who dedicate their time and effort to ntaiimand develop the IRC code
base. From the onset on, the source code has been open sowtdbe least to interest others
to run their own IRC server, and eventually connect themtteageto form their own IRC
networks. Thus, studying the code as well as running theramdpas been made possible.

Consequently there has always been an influx of contribsitiothe code, from single bug
fixes to complete rewrites and competing server series, KydBmins and other interested
users. At all times though, there were individuals who halen over maintenance and
coordination duties for an entire version, or have contigusontributed large parts of the
code; these individuals can be identifiedRE coders

There are a number of individual coders who became widelykndue to their continuing
contribution to the IRC in general, not only source code. ifiteal creator of the IRC, Jarkko
Oikarinen, is probably the best known coder. And for manysigars, single coders have
coordinated the entire source code, or single-handeditereand maintained a server source
code serie®. In other cases, IRC networks have established coding teamsmmittee®
who coordinate the work of the individual coders.

The relationship between coders and IRC admins is nechssatight one, and often
enough the coders are or have been IRC admins themselves. rél&iionship is crucial
because every IRC admin is always free to accept or rejectadg changes, even entire
versions. Therefore, in many server code versions one aaa the efforts of coders to offer
choices instead of forcing changes on the admins. Theseeahoan come in form of code
configuration mechanisms, or by ensuring backward compstitwvith earlier versions, so
that admins can choose to install new versions, or continaging older ones.

3.3.4 IRC user

Not surprisingly, the IRC user is the most common role in fRE.l It it for the users that the
whole IRC exists. But the basic opportunities given to usecgiite broad.

49The prime example here is Chris Behrens (comstud), whoenldst developed his own IRC server based on
an EFnet version, the irc2.8.21+CS series, and recentlgrieased a new series "written 99% from scratch”
(csircd series; see http://www.comstud.com/ircd/).

SFor example the Undernet coding committee (http://coaen.andernet.org/), or the DALnet coders team.

62

3.3 Main Social Roles in the IRC

First, most IRC networks are open to anyone to enter and esdtilities; no membership
application is required, or fees involved. Given that thedist many IRC networks, users have
a broad choice of networks to choose from.

Inside a network, the user can join most channels, but alsocoeate new channels at
will, for which she becomes the channel operator (see belovgddition, users can expand
their capabilities by running IRC bots Sometimes, she gets promoted to the role of an IRC
operator by an IRC administrafér

Finally, from this large pool of IRC users there is a constw of contributions for the
whole IRC community: Contributions to the code base, new #@inistrators, or members
of IRC network committe€$ concerned with network management, code development coor-
dination, public relations etc. Also, the wealth of documseand information (introductions,
server lists, statistics etc.) about the IRC in world widdwi#es, mailing lists, or newsgroups
is a contribution by its users.

3.3.5 IRC operator

IRC operators (or short "IRCops”) are users who are appdibie IRC administrators to
help in maintenance tasks, and have access to privilegetheons. Their duties encompass
administrative functions for the maintenance of their Id&C server, maintenance of the
whole network, and helping and administering IRC users.

This is an entirely code-generated role in the IRC, as alilpges and commands are given

by the IRC system. Once the privileges are revoked, an IRCatpeagain is a simple IRC
user.

It is safe to assume that IRC administrators who appointR@@dperators, also give them-
selves operator status when inside the IRC. But with the gyx@wiembership and thus grow-
ing work to be done, there are much more IRC operators in ttveank than IRC admins.

A special role constitutes thecal IRC operators (or "locops”): These are operators whose
scope of power is limited to the server to which they are diyemonnected, or the server they
are authorized by.

Finally, the Undernet Uworld has implemented its own hiehngrof users with quasi-IRC
operator status and power

51See above 3.2.1.3

520n the difficulties of becoming an IRC operator, see belovwptérar.

53The Undernet and DALnet are two examples where such conesittave formed. See their respective home-
pages at http://www.undernet.org/ and http://www.dal.ne

S4For the concept of server locality, see the information dooxcality” below, p.90.

55See below chapter 7.4.

63

3 The Internet Relay Chat

3.3.6 Channel operator

The IRC allows any user to create new channels at any time.u$bewho creates a new
channel is appointedhannel operatgrand has absolute power over this channel. She can
change a number of channel properties, deny entry or alldky e&mthe channel, etc. As this
role serves a pivotal governance role inside the IRC, the clexpter 4 below will provide
more details about this role.

Summary

This section has given an overview over the Internet Relagt Gjxstem. It consists of many
networks, each a number of IRC servers connected to eachtow@vide chat services to the
users who connect to it via an IRC client program. Inside R€,lusers mainly communicate
with each other in channels, but can also send private messagach other.

Technically, the IRC consists of many components: senfient; bots and services, inter-
connected to a network in a specific topology and data digtdb scheme. The IRC server is
the main component in the network, set up and configured biR@eadministrator who has
considerable power to change the server behavior sincenésan source code, and different
versions and series exist to choose from. Client and semteraict with each other through a
client-server architecture.

The IRC knows several different social roles: next to the iatstrators, coders and simple
users, the IRC operator and channel operator have specifiagesal tasks inside the IRC.

Finally, the IRC networks are set up and run by the principalsaa voluntary basis, that
is there is no single corporation or overarching organmatvhich runs these networks: The
IRC networks are self-organized. Also, the principals effRC do rely on social norms and,
most importantly, on the «code», the shape and shaping dRtBéechnology, to create and
maintain the social order: The Internet Relay Chat is agelerned setting. The goal of the
following chapters is to offer some insight on the variouywaode» is employed to govern
the IRC setting.

64

4 «Code» Governance in IRC
Channels

The previous chapter has laid the foundation of my IRC «cagtesernance exploration by
giving an overview of the technical and social structurethefinternet Relay Chat. Building
on this foundation, this chapter now examines the centrahgonication structure of the IRC,
thechannel

Channels are the main communication structure inside t@e TRey allow users to create
and participate in group conversations. Channels can takeus forms, from private ones
with only a few invited users up to open public fora with temshandreds of participants.
Some channels are so popular that they have built a "chaonehanity” around it, with web
sites, personal meetings etc. Also as a basic principlel ila@e IRC networks, any user
can create new channels at any time, so it is not surpriseighiere exists a large number of
channels throughout the IRC networks. At one time, a welssiiecting IRC statistics listed
over 620,000 channels with more than 1.3 million use@ertainly, without channels, there
would be no Internet Relay Chat.

My exploration of the «code» governance of the IRC thus lmgwith the IRC channels.

First, in section 4.1, | set the stage by giving an overviegvghincipal features and func-
tionality of channels in the IRC, and its technical workirghind the scenes:

e Channels are identified hyameand a textuatopic, and have a set of properties called
channel modesallowing users to form the channel to their communicatieeds.

¢ Internally in the IRC server code, a channel is represeneddata structureandfunc-
tionsacting on the data structure, both of which determine thiertieal functionality of
channels.

This description only provides an overview of these featued code design common to all
IRC instances, a kind of a 'channel constitution’. The ramar of this chapter concentrates
on the 'channel laws’, those feature and design detailslwghi@pe specific policies, and adapt
to changing social conditions.

http://netsplit.de/networks/ (2004-12-15)

65

4 «Code» Governance in IRC Channels

Section 4.2 begins with the specifics of channels as presethiei early versions of the
IRC in the first two years of its existence. The analysis offtte¢ channel design in IRC
shows how the technology forms the constraints and oppdigarthat directly govern the
user. Specifically, | describe the implementation of a fieatuhich limits the maximal number
of users in channels. As we will see, this early channel adesigharacterized by its lack of
configurability, constraining users rather than openingaosgsibilities for them.

This lack of configurability becomes evident when compacethe later channel design,
now standard in all IRC networkstamed channel&ection 4.3). Th change from numbered
to named channels is accompanied by a complete overhaut gfowernance characteristics,
the possibilities and constraints given to the users, @pgtrealized through the change in the
IRC server code. | approach the analysis by highlightingctienges made from numbered
to named channels, including the introduction of configleaannel modes as well as the
role of the channel operator. Also, continuing the case ef’thaximal number of users”
property from the previous section, | show how the impleragonh differences lead to the
changed characteristics in its use. An overview of furthemnges in the IRC channel design
over the years and in different IRC networks gives a hint eflireadth of innovation potential
in «code» rules.

In sum, the examination of the channel facility shows howghacipals in the IRC use
«codex» to shape the social setting of the IRC, and adaptliaonging conditions. The changes
are clearly not induced by technical necessity, such ashtexigd application stability, or
scalability, but 'enacted’ to shape or influence the socitdractions of the IRC users. The
«code» is used as a regulation system, and changes in th@sotire changes in the «code»
governance system.

In later chapters, | will recur to certain features of namledmnels, such as disputes around
the 'ownership’ over channel names (chapter 6), showingcti@nges in «code», as typical in
other regulation modalities as well, not only maintain tbeial order in the setting, but also
create potential for new disputes and disruption.

4.1 Principal Channel Design

"A channel is a named group of one or more users which willedeive messages addressed to
that channel. A channel is characterized by its name aneicumembers, it also has a set of
properties which can be manipulated by (some of) its meniBers

The basic concept of IRC channels is not a novel one: Usens &discussion group, with
individual messages sent to this group being immediatalyatched to all members. Mailing

2Kalt (20004, p.4)

66

4.1 Principal Channel Design

lists, Netnews newsgroups, or web fora all offer such a fonelity, although these discus-
sions do not occur in real-time, but their messages take soneeuntil they reach all re-
cipients. But other real-time discussion groups also edisiefore the IRC was created, and
indeed Jarkko Oikarinen has mentioned some predecessithrs BRC, such as chat rooms in
bulletin board systems, and the Bitnet relay éhat

The basics of channels presented here are well-known ctsaéeig in the implementation
details that the IRC offers interesting extensions to thisidconcept.

The constituting elements of IRC channels aredin@nnel namewhich identifies the chan-
nel; an optionatopic string, which give a hint of what might be talked about in thamnel;
and a set of properties of the channel caltednnel modes

Channel nameglentify channels in an IRC network. In early IRC versiorfsacnel names
consisted simply of a number, like '1’, '49283’, or -458’ {mbered channels); as standard
now in all IRC networks, a channel name consists of a sequiralphanumeric characters of
some maximal length (between 32 and 200 characters). Im trdigstinguish channel names
from other strings (such as text messages, or IRC commahdg)are prepended with a hash
mark (#)%; for example, a channel named ’hottub’ is denotedtasttub . The main use
of the name is to identify the channel in user commands, ssiemgering foin #hottub)
or exiting a channel/igave #hottub). Inside one IRC network, a channel name must be
unique; there can be only oméottub in the EFnet. But the same channel name can occur
in different IRC networks, séhottub may exist in the Undernet, DALnet or any other IRC
network as well. Finally, a special 'null channel’ existsalh networks: this is the the first
channel that all users enters when connecting to the netwbik special insofar as it does
not allow any conversations; but all members of a IRC netvasekalso member of the null
channel, therefore a list of users of that channel is equdledist of connected users.

For each channel ®pic can be provided. This is a one-line text which is displayexhgl
with the channel name in channel listings. The channel goaumpprovide here any text they
see fit, including a short description of the topic of disomiss in that channel. For example,
the channe#hottub on DALnet at one time displayed the topic "Welcome to Hottuwyeb-
site www.thehottub.net Enjoy your stay and have fui!!!But as the example for a channel
listing above (figure 3.3 on page 44) shows, there is no o#isini on the contents of the topic
text.

Finally, channels have certain properties calbbénnel modes These modes determine
who and how many users may enter the channel, how the chawisible to users outside

3The web pages under http://web.inter.nl.net/usersfie//index.html (2004-12-16) give an detailed account
on the Bitnet Relay Chat.

4In some server implementation, special channels havereiffesymbols prepended, such as the ampersand
symbol ('&") for channels which only exist locally on one ser.

50n 16 Dec 2004, found through the http://irc.netsplit.@ééArorks channel search engine.

67

4 «Code» Governance in IRC Channels

the channel (channel visibility), and the modes of commaiion inside. These specific modes
(and the means to manage them) are an important governaseetdristics in the IRC, and as
such differ throughout the IRC software versions and netaioMuch of the later discussion
in this chapter will be therefore concerned with channel esod

The IRC provides a number of commands which allow users thegabformation about
channels, or initiate actions such as entering or leavirgobls. Some of the more common
ones are listed in table 4.1.

‘ Command Description
llist lists channels, number of users, topic
/join #channel sets your current channel
/leave #channel leaves a channel
/topic #channel topic-string changes the topic of the channel
/mode #channel paraneters shows or changes channel modes

Table 4.1: Common commands in connection with IRC chaniatch, 1993)

Implementational specifics of commands are important whemexamine the governance
characteristics. For example, the next section 4.2 showmséaertain property (maximal
number of users in a channel) is implemented inffben command. The actual design
and implementation, including side effects, of commandsismportant topic in a «code»
governance analysis.

Based on this principal architecture of IRC channels, tHewang sections will now exam-
ine specific «code» governance structures in differenivesof the IRC server code.

4.2 Numbered Channels

In this section | introduce the basic design of numbered cbksnas it appeared in the first
versions of the IRC. This initial design is characterizeditsylack of configurability by the
users: Channel names were numbers, not text string nansestoperties (channel mode)
were fixed to number ranges, and could not be changed by this. ubethese terms, the
design was restrictive in terms of its «code» governanceackeristics. This is not due to any
malfeasance from the side of the developers; instead, thewssions were a 'first release’
software, were principal functionalities were alreadyser, but further innovations in code
(the technology) and «code» (the governance characts)istere continually added.

For my examination, this first design serves as a bluepriainagwhich | will compare the
changes made in later versions. Also, | give a first accoumiimat | call«code» rule patterns
Specific code patterns which have certain governance impacthe social setting.

68

4.2 Numbered Channels

4.2.1 Functional Design

1982 1990 1992 1994 1996 1992 2000
1 1 1 1 1 1 1 1 1

l +
RCWet

=EFnet —
ONEL meQ@t i ‘TQEFM
{ Anet DAL
undernet

Nuwbered
Channels

Naweed Channels

Figure 4.1: IRC Timeline — Numbered Channels

Numbered channels are present from the beginning of the lR&ugust 1988, to be re-
placed by named channels in server version irc2.5+ (Jul¥)19%Bhis channel environment
therefore lasted for the initial two years of the existenicine IRC, where the application was
in its infancy, with probably less than 50 users on average.

The functional characteristics of numbered channels shemselves in ithame topic,
andchannel modes

Channelnamesconsisted of a number, either positive or negative oneg) asachannels
"1”,719408", or channel ”-548".

Each channel also possessathannel topi¢a short text which is displayed in the channel
listing next to the channel number, to give users a hint oftwes discussed in the channel,
since the name could not provide with such a hint. And sineeetlexisted no technology-
induced hierarchy between the members of the channel, amberecould change the topic
text at any time.

The characteristics of a channel, dsannel modeswas limited to itsvisibility and the
maximal number of channel members

Channelisibility refers to the ability of users outside the channel to learitscgxistence,
or to find out who is member of that channel. This visibilitypperty was fixed to number
ranges:

e Channels 1 to 999, callgoublic channelswere visible to all users. These channels
appeared in the list of channels (using th& command), and its members were
identified in the list of users (using the commamdho), where the channel name ap-
peared next to the user nafne

e All channels 1000 and up wesecret channelsWhile the channel appeared in the list
of channels, none of its members would be identified as suttteihist of users, making

6As another restriction in this design, users could only beniver of one channel at the time. The introduction
of named channels lifted this constraint as well.

69

4 «Code» Governance in IRC Channels

it very time-consumingto find the user in a secret channel.

e Channels with names in the negative number range Welden channelsNeither the
channel nor its users appeared in the respective lists.efisred that only those having
been told the channel name/number could join the chanrték ihumber was carefully
chosen (i.e., rather -234981 than -4).

The channel property being fixed to number ranges, it wasassiple to change the visibility
of a channel. If for example the members of a public channateéto change it to a secret
channel, they had to move to one in the range 1000 and up; arywl® normally was
member of that channel, but by chance not present at thathadeto get notified of that
move. Such a move (or rather change of channel charaatsjigiquite common in the IRC:
It regularly happens that obnoxious users disturb disonssn a channel, or that two or more
groups inside a channel fight with each other. With the fixeahadel properties, there was
no other means to resolve such issues than move to anothametha he overall design of
channels constrained the users in their ability to deal wiith disrupions by themselves.

4.2.2 Technical Implementation

The actual source code reflects the functional design of eoesbchannels. As my «code»
exploration relies mainly on the source code to understasrgbivernance properties, | present
here an outline of the technical implementation (withouihgatoo much into details). My
intention is to show how implementation and functionalitg antertwined, not only from a
purely technical, but also from the «code» governance petisie.

Channel data structure

The code for channels can be separated intadtita structureand thefunctionsthat work
on that datd Each numbered channel is represented by one data strnemmedstruct °
Channel , composed of the four variablehanno , name, users , andnextch :

Algorithm 1 Thestruct Channel data structure (slightly simplified)

struct Channel {
struct Channel * nextch;
int channo;
char name[CHANNELLEN+1];
int users;

}

Source: [irc2.1.1/struct.h:190-195].

"Looking for a user would mean to enter every of the more tha@@Dchannels from number 1000 until the
user had been found.

8This is a common distinction in programming, institutideat! in the object oriented design paradigm.

9The wordstruct is a special keyword in C to denote a data structure.

70

4.2 Numbered Channels

Certain things should be immediately obvious, while otlaessomewhat more hidden:

e The variablechanno serves as channel name, while variaideneis the channel topic.
This can only be found out by examining how functions makeaiskem.

e Aschanno is of typeint , integer, it follows that channels can only have numbers as
name. Also, most system interpret an integer as being irathgerof -32768 to 32767,
so given the visibility ranges, there were 32768 hidden okt 999 public ones and
31768 secret channels available.

e The Variableusers contains the number of actual members in the channel, arsed u
by the 'maximal user per channel’ feattire

As is obvious for the channel nameiagegervariablechanno , the implementation defines
the constraints (only numbers as channel names). Whileettasmple is quite simple, the
general principle that ultimately, the constraints andarpmities of a technology-based social
setting, its regulation system, is defined by its implemionedetails, and not only standards
and protocols.

The channel list
The data structurstruct Channel holds the data for one channel. The charlimied

list*? is anchored in a global variaBfecalledchannel 4,

channel

struct Channel

struct Channel

struct Channel

14

nextch

nextch
-3498

nextch
23049

"a nice topic"
users =5

"very hidden"
users =7

"this is a secret"
users = 2

Figure 4.2: Linked list for channels

Functions which access the channel list thus starts witlglivleal variablechannel and
steps through each entry, following the poimeixtch to the next entry.

Visibility constraints in the code functions
As an example for implementation details defining goverearanstraints, | trace the design
of the visibility characteristics of channels (public, sg#cand hidden channels). As the data

1°This assumes an integer size of 16 bits, which is not alwagsé#se. But for the present discussions, this
assumption is sufficient, as it should only give an overview.

HSection 4.2.3

2In a linked list, each data entry holds a pointeextch in figure 4.2) which refers to the next entry in the
list. The end of the linked list is reached with the pointetha last entry which contains a special null value
('null pointer’). In the figure, the entry pointer is nextch.

13A global variable is one with a global scope, i.e. it can beeased by all functions in the software.

[irc2.1.1/s_msg.c:46]

71

4 «Code» Governance in IRC Channels

structure shows, no provisions are made in the channel aiigh would point towards this
functionality. Instead, one has to look into the functiorigak work on the data structure.

Since the visibility affects the output of thbst command, this functionality can be
traced to the corresponding function, list() . Basically, this function steps through each
entry of the channel list. For each of the entries, the famctiow checks the visibility status
by calling another functiof§, VisibleChannel() . When this function returns the value
"true”, thenm_list() shows the channel name to the command issuer, otherwisaihe n
is replaced by a asterisk character (™).

So the visibility condition hinges on the functiafisibleChannel() . It defines the
conditions under which channels are shown, and which ardmptementation details of this
function make clear that the above described number rageise visibility (public, hidden,
and secret) are hard-coded, that means it cannot be changethe server process is running.
The design does not provide any means to change this champarpy.

The major points that have been shown here are the impleti@nsaructure for the example
of the channel list, distinguished into thata structureandfunctions

e A sequence oflata structureentries, each holding the information for one channel, and
a pointer to the next entry; a global variable points to thgitn@ng of that sequence, the
starting point for the functions who operate on this listnf@ayovernance characteristics
are implemented here, such as the channel name being nejg@ &g a number.

e Functionsoperate on this list, implementing other governance chearatics, such as
the visibility property of channels.

In the next section, | examine the other channel property teexsibility in numbered chan-
nels: the 'maximum number of users per channel’ propertyawidrg on its functionality,
implementation, and a discussion about it in a mailing sk gets an impression of the pro-
cesses ("politics”) around such a feature. In section 48law, the resolution is shown in the
form of a changed channel property.

4.2.3 The "Maximum Users Per Channel” Channel Property

Themaximum users per chann@loperty. serves as a case analysis of how the IRC 'manages
their common affairs’: how the principals voiced their diatent with the implementation,
and how a resolution was reached.

| first outline the functional and implementation detailsgdhen provide an account of the
discussion as it occurred in the then central mailing list RC participants. That discussion

SActually, this function is implemented asfdefine directive; for our context though, this is insignificant.

72

4.2 Numbered Channels

cumulated in a voting which lead to the revocation of the cighfimit. The ultimate resolu-
tion though followed with the change of the entire channaligie and will be described in
section 4.3.1 below.

Functional design

When Jarkko Oikarinen implemented the IRC channels, heidered it necessary to limit
the number of users who could concurrently be in one chabaskd on his experience that
"[a]fter a certain number of people jump in, the conversatitien goes to hell*® He therefore
included into the code a restriction of maximal ten users adwd concurrently enter and use
a channel. This restriction was absolutely binding for aéns, i.e. there was no means
to circumvent it. As soon as a user tried to join a channel alteady 10 members, she
was rejected with the message "Sorry, Channel is full.” Thiy exception implemented by
Oikarinen were channels 1 to 10, which he declared as 'utdoshdhannels’, with no restriction
to the number of users that could enter these channels. IFetrasinels outside the range 1 to
10, the hard-coded and self-executed substantive «coteewas that only 10 members were
allowed in a channel.

Technical implementation

The 'max users per channel’ functionality relies on the alale users in the channel data
structurestruct Channel 17 described above. This variable holds the number of users
who are in the respective channel, and is continuously kpgaied by the system. Every
time a user requests to enter a channel (comnigma), the respective function (called
m_channel()) checks the limit by calling another functimameds_full()

Algorithm 2 Channel limit check irm_channel()
if (cptr == sptr && is_full (i, chptr->users)) {
sendto_one(sptr, ":%s %d %s %d :Sorry, channel is full.”,
myhostname, ERR_CHANNELISFULL, sptr->nickname, i);

return(0);

}

chptr->users++;

Source: [irc2.1.1/s_msg.c:619-624].

This code snippetim_channel() shows the conditional statement in the first line calling
the functionis_full() . If the function returns a 'true’ value, then the commandi&sss
sent the message "Sorry, channel is full” (functeendto_one()), and the function ends
with thereturn(0) statement. If the condition is false, then the lotgtr->users in-
crements theisers variable for the channel entry, updating this counter ofatteial number
of users in that channel, and the user is allowed to join tlaacél.

160ikarinen, Jarkko (1990-05-20hannel restriction Mailing list IRClist (1991)(citing another message).
7See above algorithm 1.
Bagain, this function is implemented as a directive. And ag#iis distinction is irrelevant for our discussion.

73

4 «Code» Governance in IRC Channels

The functionis_full() is shown next. It returns the value 'true’, if two conditiome
met:

e The channel is not one of the 'unlimited’ channels. This igakted by calling yet
another functiordnLimChannel() , also shown here. It evaluates true if the channel
is in the range 1 to 10.

e The actual number of users is greater or equal a variableschararusersperchannel

Algorithm 3is_full() and UnLimChannel() functions

#define is_full(ch, us) (!UnLimChannel((ch)) && ((us) >= m axusersperchannel))
#define UnLimChannel(x) (((x) > 0) && ((x) < 10))

Source: [irc2.1.1/struct.h:251,226].

Finally, the variablenaxusersperchannel is assigned its value at server startup from
a #define directive unsurprisingly call&®AXUSERSPERCHANNKiLh the default value 10.

Algorithm 4 MAXUSERSPERCHANNEL directive

#define MAXUSERSPERCHANNEL 10 # 10 is currently recommended. If this is */
/= zero or negative, no restrictions exist */
[+ If you are connected to other ircds, do */
/+* NOT change this from default without */
[= asking from other irc administrators */

[+ first ! */

Source: [irc2.1.1/struct.h:98-103]

This implementation might seem overly complex for someootefamiliar with software
programming, but it actually displays a good coding stylee €entral valuMIAXUSERSPERCHANNEL
appears as a #define directive in a source code file whichatizes all such kind of config-
urable values (in this server version nanstdict.h). This value then is assigned to a
variable (naxusersperchannel in lower case letters), which keeps open the possibility
to implement mechanism which allows to change this valuer @fte source code has been
compiled and linked into an executable program.

The source code reveals such a case, although it has not bable@ Oikarinen made
a provision that the value of th@axusersperchannel variable could be set as startup
option of the IRC server. The IRC admin had to add for exantpeoption "-c 15", to set the
channel limit to 15 users, which would override the valud¢&XUSERSPERCHANNEhe
corresponding code looks like this:

74

4.2 Numbered Channels

Algorithm 5 Startup option (commented out) for maxusersperchannel
#ifdef never
case 'c" maxusersperchannel = atoi(&argv[1][2]);
break;

#endif

Source: [irc2.1.1/ircd.c:100-104].

The first line indicates that this option is disabled. Theosekline beginning with case
assigns the given value to the variable, overriding thegassent from the directive value.

This is another indication that the complexity of the imp&rtation show a good coding
style, as it allows for an easy addition of such a functidgdhlthough, in this case, it has not
been activated).

Participants’ discussion and preliminary resolution

At some time in early 1990, a discussion in the then main IR@imgalist'® had set off
regarding the channel users’ restriction. The first maihfibis already a reply by Oikarinen,
in which he explained the initial rationale behind the rietibn, and presented an idea for a
(code-based) resolution:

From: jto@tolsun.oulu.fi (Jarkko Oikarinen)

To: irclist@tolsun.oulu.fi

Subject: Channel restrictions

Date: Mon, 21 May 90 13:24:32 +0300

[...]

>From: "Matt Crawford" <matt@oddjob.uchicago.edu>

>To: jto@tolsun.oulu.fi (Jarkko Oikarinen)

>Cc: irclist@tolsun.oulu.fi >

>| sent "yes restrictions”, with an asterisk: More channels
>with unrestricted membership might be wanted, but | like
>having some channels limited in size. After a certain
>number of people jump in, the conversation often goes to

>hell.

> Crawd{d.

That's true and that's why restricted channels were invente d

in the first place... it would be nice if the number of users co uld

be limited dynamically, everytime a channel is created. 20
The discussion went on, with some supporting the restrictidhers doubting its necessity.
Many offered alternative configurations such as:

How about upping the number of channels that allow more than 1 0 users.
Currently, channels 1-10 allow more than 10 users. How about making

it channels 1-100? Would that apgease the people who want

unmanageable conversations? 1

The suggestions concentrated around alternative numhge rechemes for the limitation,
such as: "1-9 have no limit, 10-19 have a limit of 20, 20-2%aitliof 15, and the rest have a

PIRClist (1991)
200ikarinen, Jarkko (1990-05-20hannel restrictionsMailing list IRClist (1991)
2peterson, Jan L. (1990-05-R#: 10 users per channel restrictioklailing list IRClist (1991)

75

4 «Code» Governance in IRC Channels

ten person limit.??, or "Negative channels: no limit”, 70 to 99: no limit”, "100t999: limit
of 10 users”, 1000 and above: no limi#’

In the beginning of June 1990, Oikarinen called for a votdermailing list which resulted
in 17 voting for 'no limits’, and 16 (including Oikarinen) ifavor of limits. In consequence,
Oikarinen gave what amounts to an 'official’ permission tbthe user limit restriction.

Results of ircvote regarding channel restriction removal:
17 - NO RESTRICTIONS
16 - YES RESTRICTIONS

So, from now on, people can remove the channel restrictions f rom their
servers. (Wasn't that what we voted about ?) The next irc vers ion
won't have the channel restriction enabled.

| think that the original call for votes wasn't very clear, th ere
was at least one person who misunderstood and voted YES RESTR ICTIONS
even if he meant NO RESTRICTIONS. | hope that it was the only on e.
--Jarkko

This highlights the limit of power of one individual, alreach this early phase of the IRC.
Although Oikarinen was the creator of the IRC, and and IRC iathtmator as well, he did
not force his opinion of let the channel restriction stay mpiwe others. While this could be
attributed to his personal integrity, the main reason i$ ¢élvan as the creator of the IRC, he
did not have absolute control over the decisions. IN caseiaould have tried to force his
opinion, others would have made the changes without hiserdnbecause of their access to
the source code. This is a scenario that is well known froreratipen source projects.

Another fact which may have eased the decision for Oikariséimat he already worked on
a new structure of the channel situation, including the oleauoser limit:

Anyway, | think that it's best if the channel restrictions ar e removed
now. Tolsun’s already running a test server with channel nam es as strings
and I'm trying to implement a system where first user joining a channel
gets it's 'ownership’ and can change the limits and such as he /she likes. 25

The result of this effort is introduced in the next sectioscf®n 4.3.1), where the "maximum
number of users” feature turns into a per-channel settaizlarel modé.

22pelletier, Mike (1990-05-21Re: 10 users per channel restrictioklailing list IRClist (1991)

2%khanna, Sanjay (1990-05-21) R&hannel restrictions. Mailing list IRClist (1991)

240ikarinen, Jarkko (1990-06-0Results of ircvoteMailing list IRClist (1991)

250ikarinen, Jarkko (1990-06-0Re: Results of ircvoteMailing list IRClist (1991)

26As a side note, one could compare this development to Lesaifount of the AOL chat (Lessig, 1999a,
pp.68-9). Here the limitation is set to 23 users in one "cbatm” (the AOL equivalent to an IRC channel).
What is interesting beyond the fact pointed out by Lessigtthecode does set constraints is how differently
it is dealt with in the IRC. Because of its different 'code stitution’, both in open sourcing the code and in
the role of servers and the power of IRC admins inside theesysany one IRC administrator could change
the code, and if many were changing it, it would be autombyiesmforced. Even more, because the server
code is in the open source, anyone can start her own IRC seitregr as single server-network, or creating
a new network with others. Today’s variety of hundreds dfiedént IRC network is the result of this policy,
something certainly not possible in an environment desdrliyy Lessig.

76

4.3 Named Channels - a Major Change in «Code» Governance

4.3 Named Channels - a Major Change in «Code»
Governance

vee 1990 1992 1994
i ; | '

1996 1992 2000
] ' ' ' '
r T ¥

T +
IRCwnet

I—D ik ~EFnet | = [F EFnet
i Anet DALt
Undernet

Nuwcbered
Harnile Named channels I

In the previous section | have described how the first desigrhannels constrained the
choice of the user to shape this main communication enviemtrm the IRC: Numbered
channels gave only a preset choice of visibility in the IR@] almost all channels were limited
to 10 concurrent members. In addition, using numbers do ae¢ lthe same expressional
power as text names, and the channel topic did not fulfil tmgfion well, since any channel
member could change it at any time.

The introduction ohamed channetéin late summer 19968 changed this and more. This
is the first and probably most influential «code» design changhe Internet Relay Chat.
Many code changes have be incorporated since, both to cisaamethe IRC design at large,
but nothing has impacted the IRC as deeply. This principahalel design still prevails today,
through all code versions and even new code B&sdshe different IRC networks.

This section examines the design and implementation clsaagehange in the «code»
governance, the constraints and opportunities for usgesdeng channels.

4.3.1 Names, modes, and the channel operator

The most obvious change is in the channel name. As the name&egnfnamed” channels
have text identifiers instead of numbers. In order to distisiy them from commands, or
other text input, channel names are prepended with the mashater ('#’). While previously,
only one channel "33" existed, now any of "#33", "#thirty&e", "#thirty3” etc. is possible,
as well as any other alphanumeric text stéfag

This change brought with it the necessity to decide on sontieip®to handle these new
names. Who was to create such names, or coordinated themPatdtha abandoned names
and channels? Such issues had somehow to be addressed.

The initial solution to these issues follows these priresgbr policies:

2’Sometimes also called "string channels”.

28The entire features described here were introduced in te@ssin server versions irc2.5+ (July 1990) and
irc2.5.1 (September 1990).

29.e., server versions which were rewritten from scratch.

3ONext to digits and alphabetic characters, a small set ofrstyrabols is allowed.

77

4 «Code» Governance in IRC Channels

e Channel creationAny user may at any time create new channels, just by eigterio a
previously non-existing channel. There is no special comdrar the creation; issuing
a/join #channel command creates a new channel¢channel does not exist
(otherwise the user simply enters the existing channel).

e First come-first serve No provisions were made regarding any reservation or pre-
registration of channels. When a channel does not exist,d.eertain name is not
used by an existing channel, then any user can create a dludninat name.

e Channel end-of-lifeAs easy as the creation, as quick is the release of a chaamité
name). As soon as the channel becomes empty, i.e. the lastasskeft the channel, the
channel ceases to exist, freeing the name to be used by asyustér. This 'no-hold’
policy remains the basic «code» policy in all versions of lRE server code. | will
show later on (chapter 6) how at first users, then IRC offiaiaksd special programs —
bots and services — in order to change this basic policy wsvather channel life and
control/ownership policies.

e Member in more than one channélVith numbered channels, a user could only be
member of one channel at a time. This limitation has beeediftith named channels,
allowing not only to join several channels at once, but ateate more than one channel
at one time (and becoming member of all of these).

The elegance of this solution stems from the minimal chang#se use of channels. Chan-
nel creation and deletion are quite transparent, as theg neespecial command or other
mechanism. And even the first come-first serve policy appesaesgood idea, given the easy
handling of channels.

Besides these policies, two new features were introductthaimed channels which depart
from the former policies of numbered channels in a big waye ifttroduction ottonfigurable
channel modeand the role of thehannel operatar

Channel modes
Each channel has some specific characteristics which shapestys how it can be used. In
the case of numbered channels, these were the visibilityligunidden, and secret channels)
bound to certain number ranges, and the limitation of thebramof users in channels. Both
were fixed to the channel, so no user could change these td@stcs for a channel; if users
needed different channel properties, they had to move tthanohannel.

Named channels introduced an entirely new system for cth@nogerties. Instead of these
being fixed, channel modes for named channels were made @ratilg, and new properties
next to visibility and member limit introduced. Each of teehannel modes can be individ-

78

4.3 Named Channels - a Major Change in «Code» Governance

ually changed for each channel, allowing to shape the chawcerding to the needs of the
members:

¢ Visibility: As in numbered channels, the appearance in the net-widefishannels and
list of users can be set with this mode. If septlic, the channel as well as its members
appear in both lists; when set poivate, the members are identified as in that channel,
but the channel does not appear in the channel list. Finaillly,secretchannels, neither
channel nor members are listéd

¢ Invite-Only This mode allows to control the membership more tightlythias possible
with the channel visibility. The IRC has a special commaéndite which allows
any user to invite someone to a channel. This is a short tessage which say that
'User A has invited me to channel X'. When the invite-only read set, then a user
must have an invitation for that channel in order to be abl@itothis channel. Users
without an invitation are rejected and cannot enter the mblan

e Moderated Besides the 'invite-only’ entry control, this channel necallows to restrict
active participation to specific users. All other users aratéd to listen to (i.e., read)
the conversation.

Maximum number of users
In the previous section 4.2.3, | had shown how the numbereadretis carried a hard-coded
property, allowing only at most 10 members in one channel, few a discussion and vote
among IRC principals resulted in the revocation of thattlirAi that time, Oikarinen already
hinted that this issue would be shortly resolved in a difiiereay.

This resolution came in form of yet another channel mode:

e Maximum number of users-or each channel, a limit of users who may concurrently
use the channel can be set.

Instead of fixing the limit of the number of users to a certainge or set of channels, or
limiting them altogether, this property was maakser configurablen a per-channel basis,
thereby overcoming the need to implement some fixed schesria,raumbered channels, or
as suggested in the above shown discussion. Rather than k#tve it fixed, or open it up

entirely, the functionality was deferred to the level whareappropriate decision could be
made, to the level of individual channels.

31Somewhat confusingly, the terminology has changed frombmred channels: "secret” named channels are
similar to the "hidden” number channels, whereas the "séonembered channels correspond to "private”
named channels.

79

4 «Code» Governance in IRC Channels

Channel operator
With all these channel modes, who should have the power togehhem? The answer to this
guestion comes in form of a new user role, dh@annel operatoor shortchanop.

The assignment of a user to be a channel operator is autqmuadi¢ightly connected to the
creation of a channel: The user who creates the new chanceiras the channel operator
for this channel. The policy governing the channel creaisoextended to the assignment of
the operator role. And the lifetime of this assignment igti@ad to the lifetime of the channel:
As soon as the last user has left the channel empty, the chepemtor assignment for that
channel removed; the next user who (re-)creates this chtrereis assigned the new channel
operator.

A channel operator has absolute control over her channet c8h change any channel
modes to her liking. For example, when the channel is setvite-only, then only chanops
can issue invitations, and thus control who may and who mayenter the channel. With
moderatedchannels, only chanops can talk, all other members onlyistenlread the con-
versation.

In addition, a chanop can decide (with yet another channéle@nmay change the topic of
the channel:

e Topic When set, only chanops may change the topic of the chanti@ywise, any
member can change it.

Two commands available to channel operators further uimgethe importance of this role
for a channel: The ability to exclude a user from the charar&d, the ability to promote other
users to channel operator status:

e / ki ck command This command allows chanops to exit any member off her oblann
This is an immediate exit from the channel with no long-teromsequences. If no
entry limitations are activated, the kicked user can imrmagdy reenter the channel.
The command resembles thl command available to IRC operators to exit a user
from the networR?.

The/kick command complements the other means to control channel exehip, visibility
and invite-only to control entrance, moderation to contaolversation.
Finally, another mode allows the channel operator to prerotdters chanop status:

e Chanop This channel mod®@ allows a chanop to promote other users to chanop status.
All chanops have exactly the same powers, so there is naelifte between the chanop

32See below chapter 5.1
33This is not implemented as command, but as a channel mode, isichanges the status of the list of channel
operators as property of the channel.

80

4.3 Named Channels - a Major Change in «Code» Governance

who created the channel in the first place and the others whe premoted by the
initial chanop.

Basically, this creates a kind of 'two-class community’idesa channel: those with, and those
without the chanop status. One can imagine a different takyabeing formed in channels:
one chanop who absolutely rules over the channel; a smalpgobchanops sharing admin-
istrative tasks, or one where every user is a chanop. Singecbhanops may talk when the
channel ismoderated communication settings similar to a lecture (one chano® panel
discussion (several chanops) are made possible as well.

On the other side, several introductory texts on IRC warnrag@iving chanop status to
too many or not-to-be trusted users. Apparently, there baea cases where one who created
a channel was demoted to user status by another channetampegaulting in what is called
a "channel takeover”. Later design changes, some of whielvatlined later off have also
dealt with this problem.

4.3.2 «Code» Evolves — Further Changes in Channel Design

Although one could suspect that such a large change from eredlio named channels, in-
cluding the new channel modes, the role of the channel agreztt., would necessitate further
adjustments to cope with design weaknesses or changingpeaments, such as growing and
different usership, only few changes in the channel desagnbe found in subsequent IRC
server versions. The channel design as implemented witledaimannels has proven a viable
governance environment, basically remaining unchangesenfifteen years.

Still, over the years there have been some changes maddy axding new channel modes
to alleviate some of the small shortcomings of the channgbde | will review the first three
changes made since introduction of named channels, astibeytow those shortcomings in
the design where dealt with — by introducing new modes whrcladen the actions available
to the channel operators. All three new channel modes wérediced with server version
irc2.8, released in March 1993, roughly two and a half ye#ies ¢he introduction of named
channels and associated channel modes.

Voice

Moderated channels (only chanops can speak in the charoelesl one problem: Everyone
who was to be given the opportunity to speak in a moderatedneidhad to be assigned
channel operator status. This certainly was no problemamicll which were created for the
sake of one conversation only, but in more established aiaygiving channel operator status
to all who wanted to speak out was certainly not a good idea.

34See below chapter 6.

81

4 «Code» Governance in IRC Channels

Thevoicechannel mode is a logical consequence: It gives members derated channels
the ability to talk to that channel without being assignedrutel operator powers. Therefore,
in such channels, both users 'with voice’ and chanops magksgaut the former have no
chanop powers, and the chanops are the only ones who canrdalkeoroice status to users.

Key
The keychannel mode is another entry control facility in chann&l#hen set, a user has to
provide the correct password (key) in order to enter the isblan

This feature expands the entry control mechanisms for aanBefore, visibility (obscure
the existence of the channel to outsiders) or invite-orkplieit one-time invitation must be
given out by chanop) has been available. Visibility is ndeeive for unwanted user who
have learned of the channel’'s existence, and with invilg-omannels, chanops have to give
out an invitation each time that a user wants to enter theraian

Keys allow for multiple entries, instead of giving out iradiions every time. And should
the key becomes known to an unwanted user, then only a kegehamecessary, instead of
moving to another secret or hidden channel.

Ban

This is yet another expansion of the entry control facilitgxt to visibility, invite-only, and
keys. It allows the chanop to enter single users or groupseifsuinto a channel 'ban list’,
who then are automatically denied entry to the channel. fBaiture is the channel equivalent
of K-lines® on the network level.

The implementation of the ban feature reveals anotherastely «code» governance struc-
ture. In the initial implementation, there was no limit teethize of the channel ban list.
Chanops could add any number of user or user groups to thalistthe longer the list, the
longer it takes for the server to process a channel join duea user, since the whole list
has to be searched for a possible méftcApparently, the ban list feature has been extensively
used, because only two months after the introduction of mbldmans, a limit of 20 bans per
list has been implemented into the cédeThis limitation remains in all subsequent server
versions, although the number varies between 20 and 30 learistp

This is a small example of how «code» governance mechanisranty affect the social
setting, but also affect technical aspects such as effigienscalability. Later chaptetéwill
provide further examples where coders were confronted sutt trade-off issues.

35See below chapter 5.2.

36The processing time is at its maximum for each non-banneq heeause for those, the comparison has to
take place for each and every entry in the ban list.

3"This limitation appears in server version irc2.8.9 (May 39@isMAXBANlirective. Also introduced here is
the limit of the size of one ban entry to 1024 characters.

38Chapter 5.4.2 shows how the change in the design can lesseorhputational cost of a governance feature;
chapter 8.1 discusses the costs imposed by choosing a tatlanchitecture with specific constitutional
governance characteristics.

82

4.3 Named Channels - a Major Change in «Code» Governance

Summary — «Code» Governance in Channels

Channels are the main structure in the IRC, the most impodia@ for users: Most of the
conversation takes place inside channels. They consistb&anel namgan optionalopic
string, and a number athannel mode#hich determine how the channel can be used. This
structure is determined by the server code, and serves @schastitution of channels.

The first design of channels wememberedchannels: Names were numbers, and the chan-
nel modes — visibility and maximum number of users — were fiwetkrtain number ranges.

The next designpamed channe)shas become the constitutional structure of channels in
all subsequent IRC versions: Channels are given namesafalpieric strings), and the chan-
nel modes can be set on a per-channel basis, with more mod#abée then in numbered
channels. The new role of the channel operator determimsg tmodes as well as all aspects
regarding this channel. A user is assigned channel opestturs by creating a new channel.
Channels also are deleted automatically by the system asssdbe last user leaves it, thereby
also removing the channel operator status; any new useraaneaicreate this channel and
become the new channel operator.

In principle, this design has prevailed through all IRC senersions. Some additions in
form of new channel modes were made due to shortcomings,eongkd for them due to
changing conditions; this chapter has introduced the &oand "key” modes as well as the
user ban functionality.

From the «code» governance perspective, several pointsecarade:

CONSTITUTIONAL STRUCTURE There exists a hierarchy of «code» rules, a kind of layers in
the design: On the top is the basic channel design, with ggcldanctionality, and its
name, topic, and channel modes. In this framework, the desfigext names (hamed
channels) with configurable channel modes and the chaneehimp role were amended
early on, to form the constitution of all following serverrs®ns. Further changes did
not touch these principal structures, but changed detaits) as new channel modes. It
appears that, similar to law, there is a hierarchy of «codésrpresent.

RULES TYPES Here, | try to identify instances of the rule types that wiateoduced abov&.
The channel modes could be seensabstantive rulesThey allow or disallow cer-
tain conduct for users, such as entry denial on certain gongi(maximum number of
members reached, password protected etc.) or the abilityddahe channel or channel
members (visibility). In this course, the change from fixead®s to configurable modes
would be a change in treontroller-selecting ruleln numbered channels, the coder and
the IRC admins were those who set these rules, and later ahémnel operator. This

39Chapter 2.3.2.

83

4 «Code» Governance in IRC Channels

is not only a change, but a deference down the hierarchy isdb&l roles: Not the
coders or admins, but the channel operators decide upoh#mael modes, but limited
to their channel.

Channel creation and channel operator assignment is atemteoller-selectingule,

as is the possibility for them to nominate others chanop dk Wide problem with
the latter is the equal power that any channel operator haladgeakness in theon-

stitutiverule of channel operators: any chanop can take this statos dther channel
operators—including the creator of the channel. At leagh Wievoicechannel mode,
this problem has been defused with regard to moderated elsanBut the lack of a
graded chanop status system is a constitutive weakness.

The /kick command as well as the ban list ammedial rules as they define the
type and amount of sanctions against users (channel exittiyr @enial). The decision
here is made by those who apply these sanctions, are nottputhie/kick or ban
list «<code». Finallyprocedural rulesare not implemented in «code»: In order to get
information to decide over sanctions, the chanop must b&eptan the channel to get
a first hand account about events. There are no built-initi@silwhich collect event
information.

Aside from these rule types, the «code» functions show s@woarning patterns, found in
different contexts of the IRC. As they appear to be specifiedode» regulated settings, |
offer this as an important result of my thesis, under thellabecode» rule patterns

FUNCTIONAL «CODE» RULE PATTERNS Some of these patterns are on thectionallevel:
types of constraints of opportunities given to users in R€.I[Examples of such rule
patterns are the channel modes: the visibility as well astiagimum users per chan-
nel’ property of numbered channels have bégad allowing no changes by anyone,
neither user nor official. In named channels, toenfigurablerule patterns appeabi-
nary choiceginvite-only, password protected, moderatiomgset choicegvisibility),
and those where a more or lembitrary value can be entered (maximum number of
users in channel). Binary choices appear to be a subcatefiprgset choices.

IMPLEMENTATION «CODE» RULE PATTERNS Similar to functional ones, these are patterns
which recur in different context of the IRC; but in contrasttie former, implementation
patterns are specific shapes in source code: coding stylésatares of the program-
ming language, etc. An interesting case study in this reigaitte implementation of the
"maximum number of users” property. On the functional leteis is a fixed constraint

84

4.3 Named Channels - a Major Change in «Code» Governance

of users; but on the implementational level, the coding shawomplexity which is in-
tended to offer flexibility in the configuration and expamsad the functionality to those
with access to the source code. For example, the number &f nge been defined via
a #define directive, easily visible to those (normally IR@auistrators) who configure
the source code; the definition of the range of unlimited de#nin another #define
function is not as obvious, but still easily detectable.

A last point of this chapter will be further shown in other texts as well:

FUNCTIONAL DIFFERENTIATION: The development of the channel modes shows how coders
respond to changing conditions or shortcomings with a ssieefunctional differen-
tiation, offering new mechanisms rather than changing existing émgeneral, there
is a tendency to rather open up new opportunities than imgherdurther and stronger
constraints. Examples here are the introduction of the redlaoperator role and new
channel modes, as well as making existing one more flexible.

85

4 «Code» Governance in IRC Channels

86

5 Sanctions in the IRC

In any social situation, misbehavior and rule complianeepaevalent problems, and mecha-
nisms against such behavior are an integral part of the gamee game. Consequently, the
Internet Relay Chat has devised mechanisms which cope with groblems. This chapter
examines some of those mechanisms that have been implehasneode» rules.

Already in its first incarnations, the IRC included two megisans which allow IRC offi-
cials to sanction users by either exit them from, or deny teeatny to the IRC network: the
/Kill command available to IRC operators (section 5.1), and &sliset by IRC admins
(section 5.2). | examine their functionality and implenaitn as well as their scope and lim-
its. In addition, | outline the various changes and addgitmthese sanctioning tools. They
reflect the continuous efforts to adapt to the changing enmrent such as the growth of users,
accompanied by the growth of IRC servers, admins, and apsrat

Issuing K-line bans were for a long time the sole domain of E&iinistrators; IRC op-
erators only were allowed to issdlglls . Section 5.3 traces a function which bridges this
separation, allowing IRCopsontrolledaccess to K-lines.

Beyond these sanctioning tools, other means have beenrmapted in order to alleviate
the necessity to apply these sanctions. Section 5.4 exarhwemeans, the delegation of
sanctioning mechanisms to the channel (operator) levadluaar tools which avoid situations
where sanctions might become necessary.

This chapter touches a number of «code» governance issues:

e «Code» remedial rulés /kill and K-lines give IRCops and admins a tool to deliver
a sanction, but do not implement some policy objectivesg&uttive rule). This means,
the decision of applying the sanctions are in decisionalgvav¥ the issuer, and thus
subject to IRC social norms, outside the realm of the «code».

e Balance of powersThe/kill and K-line code reveals how coders and admins struggle
between giving IRCops power to manage the day-to-day dudies at the same time
retaining control over their actions.

¢ Functional differentiationThe changes in the sanctioning tools show the development
of code towards a higher degree of differentiation, allapfior graduated sanctions.

!See above chapter 2.3.2.

87

5 Sanctions in the IRC

e Delegation Sanctioning power is delegated by providing channel dpesaneans to
sanction their'channel members, alleviating the necgss$isanctions.

e Non-sanctioning remedietJser commands allow to protect against some kinds of mis-
behavior, thereby diluting the necessity to turn to IRC @dfcto request sanctions.

5.1 The /kill Command — Immediate Sanction

The/kill command is the main sanctioning tool for IRC operators. Itived them to im-
mediately exit a user from the IRC network without recourset also with no long-term
consequences.

5.1.1 Functionality and Implementation

The functionality of/kill is quite simple. An IRC operator issues the command with the
nickname of a user who then is immediately disconnected fr@RC network.
The basic format for the command is

[kill user

whereuseridentifies the user to be exited. Upon issuing the commarausier receives a
short notice, and then is immediately disconnected from R server which she has been
connected to. Though no recourse is possible, the commasxirdui have long-term conse-
quences: The user can immediately reconnect to the sékiler: does only disconnect, but
has no sanctioning ‘'memory’. This also means that only uséis are currently connected
can be exited. Thkkill command does not allow to issue automatic exiting or entryaiie
for past or future users.

The technical implementation is straight forward. The candhactivates the correspond-
ing functionm_kill() . This function first checks two conditions, then executesdlac-
tions. The conditions are:

e IRCop privilege The command issuer must have IRC operator privileges.
e ExistenceThe to-be-exited user must currently exist in the network.
When these two conditions are fulfilled, the following aoBare executed:

e Notices A notice it send to the victim to inform her of the pendingatianection, and
the issuing IRC operator receives a acknowledgement ofubeessfulkill. Addition-
ally, all other operators are informed of the succes#illl execution. In case of an
error, an error message is sent back to the command issuer.

88

5.1 The /kill Command — Immediate Sanction

e Network state synchronizatioA message is propagated to all IRC servers so that they
can update their network state by deleting the data entriyeoéxited user.

e Disconnection On the server where the victim is directly connected tocihrenection
is severed, and thus the user exited from the IRC network.

Of some interest in the implementation are the notices. Nbtihe issuer and the victim are
informed, but also all other IRC operators receive a notiayery/Kkill issued in the entire
IRC network. This is an social norm-supporting «code» meism, and is examined in detail
below in chapter 7.3.

Such norm-supporting mechanisms are important, becaesékith mechanism does
not have any policies implemented, like for example thedfaded) 'maximum users per
channel’ rulé, where the substantial rule of 'only a maximum of 10 users s@currently
use the channel’ is automatically enforced. Wittkik , issuing the command lies entirely
in the discretion of the IRC operator. Tkl command is an example for a «code»
remedial rulé, a rule which prescribes the "nature and magnitad’a sanction, but not its
substance, i.e. what situation triggers the sanction,thkel0 users limit in the 'maximum
users per channel rule.

It does not follow from the remedial characteristic of thii command that it must be
free of any implemented limitations. At all timegijlls could be issued only by IRC oper-
ators$, and over the course of IRC server versions, further meshanhave been introduced
which gave IRC admins — who give IRC operator status to usetmices to limit the scope
of the command.

5.1.2 Changes in the /kill command

The initial design ofkill did not have any limits other than the issuer had to be an IRC
operator. Any of the IRC operators could issu&il against any user in the network.

In the course of the IRC server versions, three differenthrarisms were introduced which
changed the scope of thill command in different waydocal operators the ability of
IRC admins to entirelyevoke the /kill command privileggndr to limit them toaffect only
local users

Before | turn to each of these mechanisms, it is necessamrtmiuce the notion dbcality.

2See above chapter 4.2.3.

3Above chapter 2.3.2

“Ellickson (1991, p.133)

5An exception from this rule comes with the Uworld services below chapter 7.4.

89

5 Sanctions in the IRC

Server locality
Functionally, the IRC network presents itself to the users &ind of virtual IRC server’:
Users should not be aware of how many servers form the nefworkhich user is connected
to which server etc. The specific structure of the networlukhbe transparent to the user.
This is a goal of many distributed systems caliethsparenc.

In some cases though, this transparency is breached intorderve other purposes. Shap-
ing the scope of th&ill command is one such example, and is connected with the concep
of locality with regard to IRC servers.

Locality

A user (including IRC operators) is said to lecal with regard to an IRC server, when that
user has a direct Internet connection to that server. Thaalsmessages that the client
program of the user sends are received and processed byehadrsand if necessary relayed
to other servers. The opposite ig@moteuser: All messages that a server receives from a
remote user are relayed by at least one other server in theorét

Local IRC operators (locop)
The first change was the introduction of a new role, thatlocal IRC operatoror locop. in
server version irc2.6.1 (July 1991).

The main difference between local operators and normal IR&aiors is that the former
can only issuékills that arelocal to the servewhich authorizes them. If a local operator
is authorized by a server A, only users who are directly cotateto server A can be dis-
connected by the locop, but not users local to any other serthe network. The power of
locops thus is confined to the local IRC server.

But for whatever reason, almost one year later/kile privilege for local operators had
been entirely revokeédonly to be reinstated after yet another y&aiThis reflects some dis-
agreements, assumedly among admins and coders, as to wiid bleogiven the power to
disconnect users from the network. This assumption iswoeiefl by the other two mecha-
nisms introduced in the same time span between 1992 and 1993.

Revoke / ki | | privilege
IRC version irc2.7.2c of May 1992 introduced another medranthis time the ability for
IRC admins to allow or revoke the ability tkill users from both IRC operators and local

5Transparency thus is a goal for any distributed system. Geexmple Tanenbaum (1989, p.457) ("To the
extent that the [...] client cannot tell that the server imoge, the mechanism is said to transparent”;
emphasis in source); see also "Transparency (computiligkipedia. 2005-04-16 http://en.wikipedia.org/
wiki/Transparency(computing).

’irc2.7.2 (May 1992)

8irc2.8.5 (April 1993)

90

5.1 The /kill Command — Immediate Sanction

operators for one’s own server. If the admin activated a #idefirectivé calledOPER_KILL,
then the IRC operators on that server had the power to igdiee . Otherwise, set to the
default behavior of the server code, IRCops were not allaigadgorithm 6).

Algorithm 6 OPER_KILL directive
[+ OPER_KILL

*

* |f you dont believe operators should be allowed to use the /KI LL command
* or believe it is uncessary for them to use it, then leave OPER_ KILL

* undefined. This will not affect other operators or servers i ssuing KILL

* commands however.

*/

#undef OPER_KILL
Source: [irc2.7.2c/include/config.h:165-172].

It it notable that thelefault settindor OPER_KILL is todisallow operators to issutills
IRC administrators had to explicitly allow it before wheméiguring the server source code,
hinting again at problems with the IRC operators’ usékals

Limit / ki | | to local users

The third change came ten months after the introductio®®ER_KILL, in server version
irc2.8 (March 1993). First, the default for that directieanged, so that the server would
allow /kills by default. Then another directive was introduce@CAL_KILLS ONLY.
As the name implies, when activated, any operator on thaeseould only issuékills

for local users, i.e. users connected to the same servaubiairized the operator. By default
though, this restriction was not activated (algorithm 7).

Algorithm 7 LOCAL_KILLS ONLY definition
/* LOCAL_KILL_ONLY

*

To be used, OPER_KILL must be defined.

LOCAL_KILL_ONLY restricts KILLs to clients which are conne cted to the
server the Operator is connected to (ie lets them deal with lo cal
problem users or ’'ghost’ clients

EE R I S

NOTE: #define’'ing this on an IRC net with servers which have a version
earlier than 2.7 is prohibited. Such an action and subsequen t use
of KILL for non-local clients should be punished by removal o f the

*

server's links (if only for ignoring this warning!).
*
/

#undef LOCAL_KILL_ONLY

Source: [irc2.8/include/config.h:407-419].

Table 5.1 on the following page summarizes these changéwe diitl command. The
new mechanisms, introduced in the time frame of less thanygawos, hint toward some se-
rious problems regarding the use of itkdl command. Apparently, IRC administrators

9See above "#define directive”, page 56

91

5 Sanctions in the IRC

demanded means to limit the power of IRC operators by eitbefiming its scope to local
users, or to be able to altogether revoke this privilege. e the causes, the «code» al-
lowed them to find ways to cope with the situation, by expagdive options available to the
IRC admin to control 'her’ local IRC operators. Chapter 7 rexaes further mechanisms to
control IRC operators’ actions.

IRC operator Local operator

Initial design| Can /kill any user in the network —-

irc2.6.1 (June 1992) Introduction of locop role; /kills
limited to local users only

irc2.7.2 (May 1992) /kil1 privilege entirely revoked

irc2.7.2c (May 1992)| OPER_KILL: /kills allowed for
local IRCops if defined.
Default: not defined

irc2.8 (March 1993)| LOCAL_KILLS_ONLY: If defined,
IRCops can only /kill local users.
Default: not defined

irc2.8.5 (April 1993) /kill privilege reinstated

Table 5.1: Changes in thkill command code

5.2 The K-Line — Entry Denial Sanctions

K-lines allow IRC administrators to ban users for a longetqeeby denying them entry to the
server where the K-line has been issued. As such, they serea@amplement to thaill
immediate exit sanction.

5.2.1 Functional description and technical implementatio n

With K-lines, IRC administrator can deny entry to the seffeersingle users or user groups.
IRC admins issue K-line bans by adding configuration lineélRC configuration fil¥.
A K-line is a text line which starts with the letter "K”, anddé&s like this:

K: * .bu.edu::hoppie

In this example, the K-line affects those who connect from lamst of thebu.edu (Boston
University) domain with the user nanmppie . Any user who fulfil these conditions are
denied entry to the servér

0Chapter 3.2.3.2
YEntry denial is limited to the server where the K-line iseatéd. The user can still connect via another server
as long as she is not K-lined there as well.

92

5.2 The K-Line — Entry Denial Sanctions

The configuration file can hold any number of such lines. Anélalso is not limited
to one user, or one domain: Through the use of wildcard chens& groups of users can
be K-lined: in the above example, users narhegpie from any hostwhose name ends
with .bu.edu is denied entry. Similarly, some users from a host or domauidccbe (and
have been) excluded by inserting wildcard characters heaiser string, such d&®+ for all
usernames beginning with "ho”.

Since K-lines have to be written into the configuration filelydhose who have write access
to that file can issue thelt) which normally will be only the IRC administrator. Note thhis
is not a limitation programmed into the IRC server, but afation of the 'environment’, the
access control of the file system of the host that the serveraun. It is possible that the IRC
admin give access to the configuration file to other indivisiiadependent of their user status
inside the IRC network.

The internal operation of K-lines is straight forward. Ustartup of the server process, or
with a special commanrit] the K-lines are read into a linked [st

When a connection request comes in, the user data (usernmaitgatname) is checked
against all K-line entries in the linked list. In case of a amatvith a K-line, the connection
request is rejected, and the user cannot enter the IRC retirmugh this server.

K-lines, like the/kill command, are an example for a «codesnedial rule There are
no substantive conditions implemented; instead, IRC adaia free to issue K-lines as entry
denial as they see fit, and keep them as long as they deem amgce3fie main inherent
limitation to the implementation is that a K-line is limited the server where it is issued.
Only if all servers in an IRC network have issued a K-line f@aaticular user (or group), then
it adds up to a net wide b&h

Before | turn to important changes and additions to K-linesleithroughout the IRC ver-
sions, | like to highlight a peculiar duplication in funatiality between K-lines and another
config line, the I-line.

K-lines and I-lines — Similarity in functionality, differe nce in intention

There exists another configuration line, the I-line, whiffers the same functionality as the
K-line: Acceptance or rejection of a entry request by a uBeth config lines are also imple-
mented in the same way. The obvious question is: Why did tRedéders choose to offer two
different configuration lines with the same functionalityRe difference lies in the intention

2wildcard characters are placeholders for parts of the gstidentifying the user, host or domain. In our
example, the asterisk in.bu.edu is a wildcard character, with the whole string carrying theaming:
any hostname which ends ibu.edu . See for example "Wildcard character.” Wikipedia. 200521
http://en.wikipedia.org/wiki/Wildcard_character (§ea "Computing”) for further explanations.

13See below section 5.3 for a different interface to add Kditeethe file.

Y/rehash , an IRC operator privileged command.

15see figure 4.2 for an example for a linked list.

16see also chapter 7.4.2.1 for a net-wide ban commatide

93

5 Sanctions in the IRC

of each of these lines.

Algorithm 8 I-line

|: authorize clients to connect to your server. You can use d omains,
IP addresses, and asterisk wildcards. The second field can contain a
password that the client must use in order to be allowed to co nnect.

#

I: *.bu.edu: +.bu.edu

1:1128.197. *.*::128.197. *. =«
I:fenchurch.mit.edu:xyzzy:fenchurch.mit.edu

Source: [irc2.1.1/example.conf].

The I-line (algorithm 8) has been intended to determine geaeral policyfor accepting
or rejecting users for the particular server, partly in claation with the other servers in the
network. For example, the IRC administrators may have ageeach limit their membership
according to the top level domain of the connecting users.orf@server sets its I-line to
deny entry to all users but those from the ".com” domain, heomay only allow those from
”.edu”, yet another those from ".net” and ".gov” domains;.€dr, an IRC administrator might
manage two IRC servers, and decides to distribute the ctingessers between these servers.
For example, the admin for the ”.com” domain might decideitedt all users of the domain
"aol.com” to one server, and the remaining ones to anotheese

In this way, the admins express their specific user acceptpalicies through the I-line
mechanism. K-lines on the other hand allow the IRC admiaistrto sanction users or user
groupsin additionto the general policy expressed by I-lines.

By separating these two uses, the IRC administrator caeresegparate between the differ-
ences in intention: basic connection policies in I-linasg aser banishment in the K-lines.
Also, in the case that a user connection request is rejetttederver code can return the ap-
propriate reason for the rejection. The functional andnexi duplication helps the admins
to express and manage the different user rejection poliEresn this perspective, a seemingly
superfluous duplication serves an important governancesnea

5.2.2 Config lines complementing K-line sanctioning

The K-line mechanism itself has changed only very little e succession of IRC server
versions. Further development of the K-line functional@ther came through the introduction
of additional config lines, two of which | present here: Reknand D-lines complement K-
lines by offering a slightly different feature set for saoning users. These lines extend
K-lines in two different directions of the continuum betweaechnical efficiency and «code»
functional breadth.

94

5.2 The K-Line — Entry Denial Sanctions

R-lines

An early addition to K-lines comes with server version ic2.bu.09 (Nov. 1990). ThR-
lines or "restrict lines” work very similar to K-lines, denying &g to single users or user
groups (algorithm 9).

Algorithm 9 "Restrict” configuration line (R-line)
Restrict lines

An extended form of K line. These look for a match and run an ou tside
program to whose reply determines whether the person shoul d be let on.
R:<host>:program:username

It is a good idea to use a full path name for the program. Depen ding on
the system, it might follow the instigator's path or accept ~ and such,
but there are no guarantees.

The output of the program should be of the form

'Y <message>' to let the user in, or

'N <message>' to keep them out. In the case of 'N' the message is sent
as an error message to the user. In the case of 'Y’ it is ignore d.

The following example means hrose@cs.bu.edu can only get i n if the
program /other/irc/bin/arbitrary does not return an 'N'.
R:cs.bu.edu:/other/irc/bin/arbitrary:hrose

HHIFHHHFHHFH TR

Source: [irc2.5.1.bu.09/doc/example.conf:112-127].

The important difference to K-lines lies in the third field:

R:cs.bu.edu: /other/irc/bin/arbitrary:hrose.

Here, the IRC admin specifies an external program, in the placalledarbitrary , re-
siding in the folderother/irc/bin/ on the server host.

If a user requesting a connection matches a R-line entryptbgram is called with the
username and host as parameter, and has to return either e ™{". If "Y” is returned,
the server accepts the connection request, and the ustviedlto enter the IRC; when the
program returns "N”, the user is rejected. Optionally, thegpam can return a message string
which the server forwards to the rejected user.

In this way, R-lines allow the IRC administrator to creategrams with arbitrary criteria
for entry denial. According to a comment provided by the codéhe source code, the R-line
"allows more freedom to determine who is legal and who isiot,example machine load
considerations!” The freedom given is quite broad: For example, this progranicchase its
choice on an external blacklist, or even base its reply ortvezalata.

The practical limit given by the implementation is the pregiag time the program needs to
return a choice: Since the IRC server has to wait for an ansiweiblocked for that duration,
and can only resume processing other requests when theaprdmas returned the answer.
Repeated waits could seriously affects the overall responmee of the server which may lead

irc2.5.1.bu.09/ircd/s_conf:363-365]. Not the use of tem "legal” here; although one cannot speak of the
IRC constituting a legal system, the code is seen similaavo |

95

5 Sanctions in the IRC

to disruption of the whole IRC network, certainly an unadaéfe condition. This might be
a reason why the use of R-line has been discourdg@dit despite this warning, R-lines are
available in all IRC versions of the EFnet and IRCnet; the &indt has removed this feature
only recently®.

R-lines show interesting «code» governance propertieee e see one of the few exam-
ples where «code» policy decisions are explicitly 'outsedr to a program external to the
server process. The coders have providedhggrfaceto the IRC server, to which the IRC
admin can attach programs enforcing arbitrary policiehassges fit.

At the same time, the technical characteristics of the imglatation exhibits an important
limitation: The longer the external program takes, the tesponsive does the IRC server get,
and the larger the performance hit on the whole IRC networie @f the constant challenges
of coders and IRC admins is to keep the servers fast enougip®owith the demands arising
from the large (and growing) usership. Installing a R-limegvam which bogs down a server
might lead to the expulsion of the IRC server (and IRC adnmiminfthe network. It therefore
can be assumed that programs for R-line checks never did machthan simple lookups or
matches against some filed data.

With R-lines, the breadth of possibilities offered by thésexal program feature is counter-
balanced by the technical efficiency demands of the sendenatwork.

D-lines
D-lines?® as present in the EFnet hybrid server versibatand on the other side of the feature
vs. efficiency continuum from the R-lines. Here, performaissues have been the driving
force to implement them into the server code.

Again the basic functionality is similar to that of K-linedeny entry to the IRC server. The
format of the D-line is given as follovt&

The difference between K-lines and D-lines lies in the ’fosi in the data processing of
the the user registration inside the server code. As destiib chapter 3.2.2.2, the server

185ee for example [irc2.8.17/doc/example.conf].

%From ircu2.10.10 (April 2000) on.

20Confusingly, other IRC networks have implemented D-linesérve different purposes: The D-line in the
Undernet (ircu2.9.13, Nov. 1994) is called "connect ruled allows IRC admins to specify under which
condition aserver-connect requeshould be allowed or denied, and therefore has nothing toittouser
entry denials. D-lines in the IRCnet, appearing in irc2(&&bruary 1998), serve as "auto connect restriction”
rule, allowing IRC admins to control the server-server auts. Both implementations of D-lines are not not
relevant to our discussion.

21D-lines appear first in EFnet server version hybrid-2 (Ap&B7), but are not activated. hybrid-3 (June 1997)
is the first version where D-lines are activated (but can laetieated with théd_LINES #define directive).

22Example from ircd-hybrid-5/doc/example.conf. Earliersiens don't include this explanation, although the
functionality is implemented since ircd-hybrid-2.

96

5.3 Access to K-lines for IRC operators

Algorithm 10 "Dump” configuration line (D-line)
D : dump. Dumps all connect attempts from the matched IP

without any procesing.
First arg is target IP mask, second is a comment.
D:208.148.84.3:bot host that changes domain names frequen tly

D:128.183. *:NASA users aren't supposed to be on IRC

Source: [ircd-hybrid-5/doc/example.conf].

proceeds in four steps: request reception, parsing andtdispg, processing and responding,
and maintenance. In the case of a connection initiation dir@nclient, the request reception

step is preceded by an Internet connection initiation. Caftgr this connection has been
established can the client send an IRC connection request.

The D-line check already occurs in this connection initiatstep, before the client and
server exchange any IRC-related data. In this phase, thet ¢ only identified by its IP ad-
dress (neither username nor hostname are available attieat The server checks the D-lines
against the IP address, and in case of a match, immediajettse¢he Internet connection.

In comparison, the K-line (and R-line) checking occurs lafigr the Internet data con-
nection has been established: The client now has send and®&Cannection request. This
request goes through the reception, parse/dispatch, aegsing steps, where finally the
available user data (username, hostname) are checkedatigrK-lines, and, the user re-
guest rejected (and the Internet connection severed).

Again, as with R-lines above, we can set the functional ifeadainst the technical ef-
ficiency. Contrary to R-lines, the D-line is functionallyrited: only IP addresses can be
matched, so no rejection criteria based on username or bostid hame are possible. On
the other hand, the D-line check takes much less time thatimelcheck. The former occurs
almost immediately: as soon as the client initiates an heieconnection to the server, it is
already rejected (in case of a match). In contrast, a K-lapection can occur only after the
Internet connection has been established, and an IRC commeequest sent and processed
by the server.

5.3 Access to K-lines for IRC operators

The previous sections have introduced two complementingt&aing means in the Inter-
net Relay Chat: thékill command which exits a user from the network, issued by IRC
operators, and thK-line which rejects a user’s connection request to a server,dssye
IRC admins. The separation between the two mechanisms ocguitesnaturally: issuing an
immediate user exit from the network is easiest done frorhiwithe network, by a (privi-
leged) user, the IRC operator, which suggests the commaedaoe. A long-term ban on

97

5 Sanctions in the IRC

the other hand needs to be saved between server restatis, ganfiguration file mechanism
is a natural choice not the least because the IRC admin aestighinking official in the IRC
controls access to that file. This way, the hierarchy betie€admin and IRC operator — the
former nominating the latter — is underlined by the separdbetweerkill — —the 'weaker’
sanction —, and the K-line as more severe sanction, and #ttbggle reflected by thiill
command «code» chang&sire any indication, this hierarchical relationship was alotays
a harmonic one.

But IRC admins face a dilemma: On one hand, the more power Ip&Zators hold, the
more duties can be delegated to them. On the other hand, roaer pneans more potential
for abuse (as judged by the admin), and the necessity for comteol, diluting the usefulness
of delegatiod*. The mechanisms implemented to limit the scope of/kiile command —
local operator, revocation of the command, local users bmligation — might be interpreted
as «code» tools for admins to be able to reduce the costsvedalith the delegation, for
example having to cope with complaints because of obseésive use by one of her IRC
operators.

The following example 4klines — examines «code» mechanisms implemented to in-
crease the benefit side of delegation. The implementatidhi®fcommand suggests that it
became necessary to apply more and more bans, so that sorméadijo be found to allow
IRC operatorgontrolledaccess to K-Lines after all. As solution, a command intertacthe
configuration file was implemented, serving the delegatigedive in two ways: The IRC
operator is given a means to issue K-line bans from within® but due to the implemen-
tation specifics, this access is limited (command scope@ians) and controlled.

5.3.1 First experiment — Undernet’s /kline and /addline com mands

The Undernet was the first network to implement a command twhllowed IRC operators
to access the configuration file. In Undernet server versa?i9.22 (August 1995), the IRC
operators had access to two commanitine , and/addline . Both allowed the IRC
operator toadd config lines to the configuration file (and to the config line&kéd list in the
running IRC server). The command format was:

/kline user
/addline linestring

23See above section 5.1.2.

24This dilemma is known as the principal-agent problem: "THagpal-agent problem arises when a principal
compensates an agent for performing certain acts whichsailuto the principal and costly to the agent,
and where there are elements of the performance which atly tmebserve.” ("Principal-agent problem.”
Wikipedia (2004-04-17) http://en.wikipedia.org/wikiiRcipal-agent.). See also Richter and Furubotn (1999,
p.163)

98

5.3 Access to K-lines for IRC operators

The/kline command added K-lines, with further limitations: only orseuat a time could
be K-lined (i.e., no wildcard$ were allowed), and the implementation required that the use
was a current user in the network in order to/kiene d. One could say that thikline
implementation was similar to ill command, with the addition that the user also was
banned for a longer duration, instead of being able to imateti reconnect.

The second command was much more powerful: Any config linrdyding K-lines) could
be added to the configuration file, with arbitrary settingso dther limitation besides IRC
operator privilege and a superficial syntax ch€okas implemented. For example, while
/kline was limited to one (existing user), no such limitation esasfor/addline : any
kind of K-lines could be entered.

The ability to use these commands depended on the #defireivkr®YNAMIC_CONF
which was activated by default (algorithm 11).

Algorithm 11 DYNAMIC_CONF directive (activate /kline and /addline corants)

/ = Define this if you want Operators to be able to add lines to irc d.conf
* WARNING: Do not use this if you have a large number of operator s, or
* if you do not trust everyone to add lines responsibly. These | ines
* are logged, but it's smarter to not allow it unless you need it and

* can be sure it will be used responsibly. -Cym-
*/
#define DYNAMIC_CONF

Source: [ircu2.9.22/include/config.h:85-92].

The comment text shows that the coders were aware of the-oféslassociated with these
commands. On one hand, the commands let the admins delégatask of applying K-
lines, or add other config lines, to IRC operators. On therdthed there was the potential
that IRCops abused their powers, giving admins extra worksolve the resulting disputes.
| must also be considered here that many IRC admins do not kheiwIRC operators in
person, but only from ’inside cyberspace’.

Further aspects of the implementation try to deal with tleeseerns: The command inter-
face to the configuration file is strictly limited tddingconfig lines; there are no provisions
made which could either change or remove these lines. Téwsmkans that the added config
lines by themselves serve as a record of the actions by thefR@tors. Together with a text
comment which included a time stamp and the nickname of tidofRwho added the line,
admins could review the action of their IRCops simply by ¢ieg on the added lines in the
config file. Command interface restriction and logging fackerved here as control tool to
alleviate the trade-off between delegation benefits antraloeosts.

25See footnote in text accompanying the use of wildcards iinkslin chapter 5.2.1 above.
26The function checked that the first character was a alphzdgitter, followed by a colon (the field separator
for config lines), which is the common syntax for configuratimes.

99

5 Sanctions in the IRC

In the Undernet, thékline and/addline commands did not last long: Only seven
months latet’, both commands were removed from the server code. Instead)ndernet
introduced a whole new «code» concept for empowering IRCatpes and implementing
control mechanisms: the UWorld service, which is examingld in chapter 7.4 and which
inter alia brings the 'ultimate’ sanctioning mechanisme thline command issuinget
widebans.

5.3.2 /kline and exceptions in the EFnet

Either driven by the same needs, or adopting the idea of thketnet coderS: Around the
same time that the Undernet experimented with an IRCopsheand interface to the config
file, the EFnet coders also implementetkine command®. Other EFnet server series
followed suit®.

In contrast to the Undernet implementation, the EFnet sam@esion never introduced a
generic/addline command; onlykline s offered to IRCops.

The basic functionality is similar to the Undernet versibat some differences exist. The
most obvious one concerns the scope of the command: the &Ensein allows IRC operators
to issue/kline using wildcard characters, therefore are not limited taegklines for
one specific user, but can target user groups. Also, targetexs have not to be connected
to the IRC network at the time that/&line is issued. Otherwise the functionality and
implementation is similar to the Undernfgtine command.

E-lines — exceptions from K-lines
Another new feature implemented in the EFnet creates artiawlai layer of 'control’ for
admins, next to to the limited command interface, and theitug facilities: The ability to
exclude users or user groups from belkigned by IRC operators.

E-lines are entered into the config file, therefore accesshly to admins, but not IRC
operators. The server source code offers a short explarfatiohis feature (algorithm 12).

The comment shows one possible use of E-lines: The IRC admérsa K-line as a gen-
eral case (every user from the domaimetcom.com), and then provides exceptions from

27ircu2.9.30, March 1996.

28Given the timing, the +CSr series could even have been thetéirimplement/klines : /klines
appeared in the August 1995 Undernet server version; ash®r+CS series, | have no exact date
when it was implemented, but the first +CS version came outuneJ1995, the documentation
([irc2.8.21+CSr20/README.CS] suggests thattkiine has been changed in +CSr16 (December 1995),
pointing to an earlier first release for that feature.

29Beginning with one of the +CS versions prior to irc2.8.21+2Z5Jan 1996)

30Early +th versions and the hybrid series.

100

5.4 Beyond /kills and K-lines

Algorithm 12 "Exception” configuration line (E-line)
[+ E_LINES - Define this if you wish to have lines that bypass
K: line checking...ie for example:
You want to K-line all of netcom.com except for
* cbehrens@ * netcom.com, use:
K: *netcom.com:: *
E: » netcom.com:: *cbehrens

*/
#define E_LINES
Source: ([irc2.8.21+CSr20/include/comstud.h:19-27]).

that case (users whose name matchehrens are exempted from the K-line). The con-
current introductiorikline and of E-lines suggests another use for E-lines: Adming ente
exceptions to K-lines, so that these users canndklbeed by the IRC operators.

5.4 Beyond /kills and K-lines

In the previous section, | have examined a number of sanngianstruments which allowed
IRC officials to cope with misbehaving users. These are ekasmgl remedial «code» rules —
they define the quality and severity of sanctions, but thésdets over their application is left
to the officials who apply these sanctions. In this secti@xadmine two other «code» means
which do not give IRC admins or operators more sanctionivgges, but have the potential to
relieve them of the necessity of some sanctions.

In section 5.4.1, | set the channel environment into the exdndf sanctions: From this
perspective, the empowerment of channel operators canelmeasea delegation of powers to
lessen the necessity to issue /kills or K-lines. Sectior?5déscribes how coders have reacted
to a specific kind of misbehavior — flooding — by giving the gsarmeans to address the
problem. The initial design remedies the effects for the,usét does not address the side
effects, the load put on the network. A later redesign ad@eboth aspects, showing how
new ideas in design can overcome the technological chakeimy«code» mechanisms.

5.4.1 Delegating sanctioning power — Channel modes, kicksa nd
bans

In chapter 4.3 above, | have introduced "named channel$ieggrincipal design of channelsin
all IRC networks. This design includes a number of channal@savhich shape the ways that
a channel can be used, including access rules and contnott@/eonversation; the channel
operator who controls the channel, and some commands esatjuavailable to the channel
operator.

When we compare the channel and the network environmentregtard to sanctions, it

101

5 Sanctions in the IRC

becomes clear that these two have very much in common; theyshlare the equivalents on
the respective level of the IRC:

e User exit: The corresponding command for thid command is thékick com-
mand available to channel operators, with exactly the sam&tibnality on their respec-
tive level: to exit a user from the environment (network oawchel). They even sport
very similar names which assumedly is no coincidence.

e Long term banishment: Whereas the K-line entry denial has b@plemented from
the beginning on, channel-level bans were introduced atér But both are meant to
banish users or user groups from the respective level. loabe of K-line though, users
may still enter the network through a server which did naiésa K-line for them, while
the ban list blocks the only entry to a channel.

Shaping the IRC as a two-level environm®ntith the introduction of named channels and the
accompanying «code» changes gave IRC officials an opptrtimndefer authority down to
the level of channels, and give them «code» mechanisms todgeatheir common affairé®,
under the 'shadow of* the IRC network officials.

This deference to a lower level strongly resembles theipaliscience concept cfub-
sidiarity®: The deference of authority to the lowest competent leveluthority. By giving
users the power to manage their own channels, the IRC offiziale relieved of having to
resolve all disputes between users. As we will see in the clepter 6, the tendency to give
channel operators a wider array of tools to shape the chamwgbnment continued with the
introduction of registration services. The additional povior IRC operators to interfere in
channel operations in the Undernet through the UWorld ser(chapter 7.4) indicates that
subsidiarity was not the only answer to solve the governgoeadary in the IRC.

5.4.2 Non-Sanctioning «Code» Remedies

All instruments presented so far in this chapter has beatemnigo give some officials — IRC
admins, IRC operators, and channel operators — instruni@tispense sanctions. The last
section presents an example where not officials, but theisggven a command to protect

31See chapter 4.3.2.

321t would not be correct to speak of layers here, since théndison between network/server and channels is
more along the line of the ’inside’ vs. 'outside’ view of tealogy. For a similar argument, see Frischmann
(2003).

33See the governance definition, above p. 25.

34In legal scholarship, governance concepts which allowapeivegulation inside a legal framework (private
ordering) is sometimes referred to as "in the shadow of thé&, lan contrast to regulation outside any legal
framework (and control). See for example Lemley (1998,.p.6)

35See for example "Principle of subsidiarity.” Wikipedia. @302-03 http://en.wikipedia.org/wiki/Principle_
of _subsidiarity.

102

5.4 Beyond /kills and K-lines

herself against a specific misbehavior. Such user-empogereans are well known in Inter-
net applications, such as filter against junk mail, or popvuow blocking in web browsers.
Such means are not sanctions per se, but are implemengithsituations where the user
has to rely on officials’ action for remedies.

The example chosen protects IRC users against a specifiotypiebehavior called "flood-
ing”™

«Flooding is the rapid repetition of words, symbols, ctcpmatands or other contacts designed to
overpower a user and force a disconnection. This is calleddihg someone off’. Not only is
this very annoying, but it also interferes with the workirgs...] servers.3°

From early on, users were given a command block flooding bgkimg all messages from
flooding users. But this early design — thgnore command — did not help with the side-
effects, the load that a flood puts on the entire network bintakip bandwidth between, and
processing time in the servers. Much later on, a new desiga/sitence command —was
introduced with the same functionality, but which also added the side-effects of flooding.

This small examples show how changes ’'behind the scenesigitechnical implementa-
tion, has important influence on the governance impact ofnancand, even when the func-
tionality for the user does not change.

The /ignore command
the/ignore command allows users to block all messages from other uséignore’ them
altogether. This feature has been available from the orfisbedRC on.

Functionally, the command is issued to manage a list of ugskcsare to be ignored. She
can also limit this block to specific types of messages (oniyage messages, or only ctcp
message'$) (algorithm 13).

Algorithm 13 The /ignore command
/IGNORE [<nickname>|<user@host> [[-]J<message type>]]

Suppresses output from the given people from your screen. IG NORE can
be set by nickname or by specifying a userid@hostname format . Wildcards
may be used in all formats. Output that can be ignored include s MSGs,
NOTICEs, PUBLIC messages, INVITEs, ALL or NONE. Preceding a type with a

" indicates removal of ignoring of that type of message.

Source: Pioch (1993).

The important technical aspect is that the command is im@htedin the client program
This means thalignore is a feature of the IRC client, while the server is ignoraniwb
it. Factually, the user (i.e. the IRC client) helps herselirtanage flooding by selectively
ignoring the incoming messages from the network.

36Kzoo and LadyDana (2001)
3’See above chapter 3.1.1 for a short description of theseages$gpes.

103

5 Sanctions in the IRC

Internally, the IRC client holds a list of users whose message to be ignored. When the
client receives some data from the ’ignored’ user, it dréyesdata instead of displaying it to
the user. All message data still travels through the netwawkis ignored at the destination
(figure 5.1).

@D @ {looddata

D block List

Figure 5.1: Flood block witlignore

Description User/client z (on server B) tries to flood user/client b (em®r K). But b has added
user z to her ignore block list, so user b does not see any dftbé data.

The flood data adds considerably to the system load for allessrin the path between z and b,
and this can lead to the disruption of the whole network. Whegwork officials encounter such a
situation, it is regularly reason for a sanction (either &i | | or a K-line).

From the user perspective, the flooding problem is solveé:cimmand gives her the abil-
ity to filter the flooding by ignoring messages from the offieduserg®. The client simply
drops all unwanted data. Also, the form that this filteringegonly depends on the implemen-
tation in the client program itself. More sophisticatecefiihg capabilities can be imagin€d

On the other hand, the side effect of flooding, a heightenedes@and network load is
not addressed at all. IRC officials still need to identify thisbehaving user, and then issue
sanctions against her.

The /silence command

In May 1994°, the Undernet implemented a command into its servers wiffelsathe same
functionality as théignore command, but differs in their technical implementationdpe
with the network load effects of flooding: tiigilence command.

380bviously, this command can be used in situations other loading as well, where a user wishes to stop
messages from specific users.

39Such filtering is an ideal candidate for scripting facikti] the IRC client; see chapter 3.2.1.3 for a short
description of scripting in clients.

4%rcu2.8.19.U.3.2

104

5.4 Beyond /kills and K-lines

From the user perspective, nothing charfge@ihe user calls the command with the offend-
ing user as parameter in order to stop receiving messagedia Like/ignore , messages
from flooding users are therefore blocked.

The important difference to thiegnore command lies in the implementation details The
whole mechanism is handled by the servers. Instead of kgepalist of blocked users in
the client program, the silence mechanism keeps the listiseoserver side, that is at the local
server of the blocked user. If for example, ubdnlocks usez who is connected to a server
B, then the blocking lisbn serverB is updated (figure 5.2). Consequently, all messages that
userz on serveB sends to usdp are already blocked by servBr and do not travel over the
IRC network.

— — P /silence data

D block, List

Figure 5.2: Flood block witlisilence

Description User z (connected through server B) tries to flood user bijected through server
K). But because b issued the commdrsd | ence z, server B has user z in b’s silence block
list. Now server B blocks the the all data bound for b, and nodldata goes through the servers
connecting z with b.

The main advantage from the perspective of the IRC networkear: The flooding is
stopped at its source, the server where the flooding usemisected to. IRC officials do
not have to act by themselves, because the user herself vhbelea flooded remedies the
situation by issuing &ilence command.

The technical cost of this feature lies in the checking meidma: For every message, the
server has to match the sending user against the silencé &Btrecipients. In order to keep
this computing cost on the server side in check, the numbaseifs who can be silenced is
limited to 15 entries in the silence list.

41Also, the/ignore command is still available to her.

105

5 Sanctions in the IRC

This trade-off between higher computing cost versus Imgiflooding costs appears to have
been favorable for the Undernet, according to the creattriscommand, Carlo Wood:

Carlo: Now the SILENCE command did strike even myself as #yltwilliant solution if | may
say so ;) giving the solution to a problem that had existed €oyears: Make the problem of being
flooded the problem of the one that is BEING flooded - give henthe means to do something
about it.

Carlo: Afterwards it looks very trivial :}2

From the perspective of «code» governance, this examplesshow two mechanisms with
the same functionality, but differing technical implemegian can have a different impact on
the governance situation of the system. This is an indindthat the architecture, determined
by its functionalities and often put down in standards amdquols, does not provide the whole
governance picture of a system, but that changes in tedhaetails can have an important
impact on the governance characteristics of a séefting

Summary — Sanctioning in the IRC

Sanctioning is an important issue in any social settindhdtéfore is no surprise that a number
of rule types are apparent in the «code».

From the onset on, the Internet Relay Chat had two mechanimspiemented: The ability
to exit users from the networlkqll command), and to issue long-term bans (K-line). Both
are an example of «codeemedial rules They define the amount of sanctions given, but do
not specify when the sanction has to be issued.

As principal design, a separation of power had been upheichwé ancontroller-selecting
rule: while the immediate exit command has generally been aMeil® IRC operators, IRC
admins did reserve the right to issue bans for themselves.

As certain times, the server code changedcthestitutive ruleof IRC operators, or let the
admins decide about changing them: by adding a limited egerale (local operator), restrict
/kills to server-local users, or even denying local operatorssisaltogether. On the other

42Undernet-User-Committee (1997b)

43Another interesting aspect is the positioning of the techirfunctionality in the system. While thignore
command positions its functicat the endof the system — in the client —, thigsilence mechanism is
positioned in the servers itself. This is an example for aoeption’ from the end-to-end argument discussed
in the Internet governance literature (Saltzer et al. (J9&h Schewick (2004)). In short, this argument con-
cerns the placement of functionalities in a multi-layergstem, arguing for placing these functions towards
the endpoints of the system, i.e. towards the user (see Vaewgtk (2004, pp.87-107) for an extended
analysis of the argument). The ’exception’, or rather traffehen lies in line with the argument made by
the original authors that the end-to-end argument "pravalbasis for discussion and analysis of trade-offs”
rather than "solving the design problem” (Reed et al., 19%hce the IRC is not strictly a multi-layered
system, further work is needed to examine how the end-tocaeguiment can be applied to applications like
the IRC.

106

5.4 Beyond /kills and K-lines

hand, the later addition of th&line command, allowing IRC operators &ald K-lines, is
indication of the necessity to expand their power, albeit controlled way (only additions of
lines).

With K-lines, the prevalent issues were the expansion offuhetionality of bans. Next
to the intentional separation of functionally equivalergahanisms (I-line vs. K-line), fur-
ther config lines expanded the functionality: R-lines allogvarbitrary condition checks (and
thereforesubstantive «code» rulée be implemented) for rejection, but at the cost of slow-
ing down the server process, and D-line allowing a very fagcation, but only based on IP
addresses.

Finally, deferring power to sanction down the hierarchytfte channel or user) was in-
stituted to allow lesser sanctions at a more appropriateeplkkicks and bans out of a
channel, andignore or/silence other users. This is eontroller-selectingprinciple
which resembles the subsidiarity rule in political science

From the «code» governance perspective, a number of togiestauched:

INTERFACES Sanctioning mechanisms and features explored in thistehegre accessible
through different interfaces with different charactecist The file interface, exemplified
by the configuration file, offers easy access to the IRC adinib,is inaccessible to
others, unless another interface is created, likelkhee = command interface. The
latter has been used to implement control mechanismsinignéticcess to the file (only
adding K-lines), and automatically add further informat{edded when and by whom).
Also, the R-line example shows the widening of the K-linediionality by creating an
programinterface: the server explicitly starts that program teeree its judgment about
acceptance or rejection of a user connection request.

IMPLEMENTATION VS. FUNCTIONALITY: The R-line interface also showed a specific char-
acteristic often encountered: the trade-off between ranyitcondition and computing
cost. The more refined the functional capabilities of a fegtthe more costly it may
be to execute it. On the other hand, the example ofigmore vs./silence com-
mand shows that new ideas in code design and implementatiobhenefit both overall
technical efficiency and increased functionality.

DEFERENCE Although the IRC is a self-governed setting where no exemegulating force
is present, this does not mean that there is no hierarchy gut@nprincipals of the
setting. The limitation efforts of thékill command show the struggle of IRC admin
how much power the IRC operators should be given. But theratage has also be
shown: the/kline command gave them powers previously reserved to IRC admins.
While this might be not considered as deference, the empoemrof channel operator

107

5 Sanctions in the IRC

to issue/kicks and bans, and of the userfignore or/silence are examples
how principals on lower levels are given means to addressaepdable behavior by
others. «Code» allows to design such mechanisms, as weteatecadditional roles
(local operator), in order to shape the social setting.

RULE TYPES. These points can also be interpreted in the context of tleetypes: In the
case of the interfaces, the file vs. command interface ptangscontroller-selecting
rule; /kline changes this rule, but formulates the constitutive ruldroftéd access
and implements a procedural rule by recording time and idéogging). The program
interface of the R-line allows the IRC admin to externalisdstantive rules into the
program, much easier changeable for the admin than chatiggngerver source code
itself, but at the price of increased computing cost.

The computing cost might be interpreted here (R-line) asttmive rules for admins,
limiting their ability to implement costly checking proages, rules which can quickly
change when the means are found to lower this cost.

Finally, deference is the empowerment of controllers ddversbcial hierarchy, a controller-
selecting rule. Software seems to be a well-suited tool textgalize power to a certain
extent, a tendency that was already present in the previtager on channel manage-
ment.

108

6 Nickname and Channel Ownership

There are two classes of identifiers which are unique ingidR&€ network: Nicknames, by
which every IRC user is identified inside the network, andncieh names. The examination
of these identifiers in the IRC provides an interesting casdyson how the IRC networks use
«code» to shape the policies regarding the control ("ovimgtsover nicknames and channel
names. | will trace how the IRC networks have treated thecisglownership of nicknames
and channel names, mainly by means of «code».

Section 6.1 gives a basic description of nicknames and @&harames, together with the
policy in the first IRC network, the Onet. Their policy was aticome first-serve, paired with
a ’'no-hold’ policy: as soon as a name was not used anymorenagould take that name and
use it.

Apparently, the need for a longer-term hold over names ayesethe time. As section 6.2
shows, this was first accomplished by tapping into the p@kwitthe client-server protocol of
the IRC: So-calledotswere created which automatically hold the names for the tisereby
effectively circumventing the no-hold policy.

Probably as reaction to such bots, some IRC networks creétei@dl services offering some
kind of name registration and reservation. The examinatfochannel registration services
in two different IRC networks in section 6.3 shows how «coéeabled these networks to
express and enforce different policies through their redgeimplementation: either as own-
ership policy with no conditions attached, or as a tempocantrol bound to an elaborated
registration process, and various conditions for the uske$ervice.

From the «code» governance perspective, it is notable hodexcenables the participants
to express their specific policy views: Bots help users tgshheir own environment, over-
riding the default policies of the network. The channel segition services show how «code»
makes it possible to design and enforce a fine-tuned 'owigErgblicy apart from a simple
choice between absolute control over a name, or a 'no-cloputicy.

109

6 Nickname and Channel Ownership

6.1 Nicknames, Channel Names, and Early Ownership
Policies

This section explains the characteristics of nicknamesciiatinel names, together with the
initial 'ownership’ policies in the early IRC network.

6.1.1 Nicknames

Nicknames serve as pseudonyms for IRC users, identifyim tihside the network: In chan-
nels, each text line is prepended with the nickname of thdesemisers address private mes-
sages to others via nicknames, and other commands takeameeas parameter, e.g. the
/whois command which returns user information for a given nickname

Every user has to choose a nickname for herself when entdra¢RC network. The
system ensures that the nickname is unique: If the providdahame is already used, the user
has to provide alternative names until a unique one can hgnaskto her; only then can the
user enter the network.

Once granted entry into the IRC, the system allows usersaogdthe nickname at any time
(provided that the new one is unique as well). Each nick ceasgotified to all members of
the channels the user is on, so that no confusion arises odehsty of the user with the
changed nickname. Such nick changes are often used to ex@nesod or other sentiments.

Not all users choose to change nicknames. Specifically, knellvn people in the IRC
identify themselves through nicknames: the original aeat the IRC, Jarkko Oikarinen, for
example is known as "WiZ” in the IRC.

Technical implementation

Internally in the server, a linked Isholds a data entry for each user in the entire network. This
entry contains the actual nickname, as well as user-/hosrieom which she connects, and
other related information. As with other IRC state datas thiked list is kept synchronized
between all servers. When a new nickname is chosen by som@uasentry, or nick change),
this linked list is consulted to check for a possible nickeastash.

From this implementation follows that nicknames are onlggua among IRC servers which
are interconnected to form an IRC network. Therefore a raaka taken in one network may
be free in another one.

Nicknames themselves consist of a combination of lettégischlus a few other symbaols

!See also above chapter 3.1.1.

2See above figure 4.2 on page 71 for an example of a linked list.

3For example, [irc2.8.21/ircd/s_user.c:218-222] defihesailowed characters range as:
+» Nickname characters are in range
o ALY, S, 09
+» anything outside the above set will terminate nickname.

110

6.1 Nicknames, Channel Names, and Early Ownership Policies

and are limited to a maximum of nine characters in most neéksfom his amounts to some 50
quadrillion (a 5 followed by 16 zeroes) combinati@rsut as often the case with such kind of
identifiers, there are much fewer ’interesting’ combinatiike existing words

or names.

Initial nickname policies

In the initial IRC network, the Onet, the possibility of diges over names have apparently
not shaped the nickname policies. Rather, simple congidesasuch as probable confusion
when two users are identified by the same nick) must have duigeimplementation. The
policy has three cornerstones:

UNIQUENESS — As mentioned above, only one member of a network can usec#ispeck-
name at a time. From the functional perspective this is rdytavhat a user would
expect. Technically though it is not a strict necessity fog implementation, but this
condition simplifies the technical design of handling usertse servet. An attempt to
register to an already used nickname is calleickname collision

FIRST COMEFIRST SERVE — Anyone is may use any currently unused nickname at any time.
This policy comes quasi 'naturally’ with the technical dgsi The server-internal user
list only holds the used nicknames. And in order to fulfil tmequeness condition, this
list is searched for a match with a new nickname, acceptedhwbematch has been
found. Any other policy would require additional code.

NO HOLD — As soon as the user leaves the IRC network or changes to aickmame, the
old one is released and can be taken by any other user. Onlyste nickname is
bound to the user, and only for the duration of its use. Adais,is a side-effect of the
technical design: when a user exits the network, the intersexr entry is deleted, and
the nickname thus 'forgotten’; with a nick change, the oldeas overwritten by the
new one.

+ |n addition, the first character cannot be -
x or a Digit.

4A notable difference here is DALnet, which allows a maxineaidth of 30 characters.

562 choices (A to '} and ’_’) on the first position, and 73 (6@lus -’ and the ten digits) on each of the
following eight positions equali2 * 73% ~ 5 % 10'¢ different names.

5The probably best-known fight surrounding ’interestingernitifiers concerns the Internet domain names.
For a comprehensive source about this controversy seé/tipv.icannwatch.org/ (which by the way is
organized similar to the IRC, as unincorporated, voluntfésrt based on open source software: http:
/lIwww.icannwatch.org/about_us.shtml, 2004-04-18).

"For one thing, the nickname suffices to uniquely identify arustherwise other data, such as the user-
/hostname from which the user client connects had to be gedyior an internal unique identifier defined
and implemented.

111

6 Nickname and Channel Ownership

In the server code, this basic policy has been principalghanged in all server versions, and
the EFnet has until recently upheld it as only policy. Othetsworks have changed their policy
regarding nicknames, but not through server code changeéshimugh the use of services;
section 6.2.2 below presents an example for a nicknamecservi

6.1.2 Channel names

The subject of channels, including their names, have beamiged in detail in the previous
chapter 4. Here | will only repeat the points that are imparfar the discussion of channel
names, which is quite similar to the treatment of nick names.

Channel names identify channels in the IRC network. Lik&ménes, they can consist of
a combination of letters, digits plus some symbols. The nafreechannel is chosen when
created: the first user who joins a channel with an unused cagag¢es that channel (and the
user becomes channel operator of the channel). In contrastknames though, a channel
name cannot be changed after its creation. But as it is easgabe another channel, and then
notify all users to move to the new one, this is not a seriqugdition.

Technical Aspects

Similar to the user linked list, servers internally maintaichannel linked list with each entry
representing a channel in the IRC network; the channel narore value in this entry. And
similar to nicknames, a channel name taken in one network Ineafree to take in other
networks.

Initial channel name policies
Similarity of shape and implementation between nicknanmeschannel names continues in
the initial policies:

UNIQUENESS — Channel names have to be unique in a network.

FIRST COMEFIRST SERVE — The first one to use a name holds it as long as the channed.exist
The specific design of channel creation though shows onerdifte to nick names:
Channels are created in the same way that one enters thesthdmencommandoin
#channel creates the channel if it does not exist yet in the netwohetise, the user
simply enters the existing channel. Therefore users wilenencounter the rejection
of a channel creation due to a name clash, as can happen whssr ahanges her
nickname.

No HoLD — The channel does only exist as long as at least one useids ifs But as soon
as the last user has left, the channel ceases to exist. Anyagecan (re-)create this

8This does not necessarily be the channel operator; anysiaei

112

6.2 Policy Changes With Bots and Services

channel, and thus becomes the new channel operator.

The most controversial channel policy is the last one. Foreskinds of channel usage patterns
— when it is used for a quick chat — this policy might have bedfficsent. But early in the
IRC, stable communities formed around channels with speoidimed. For these groups,
the policies were in no way optimal: They had to ensure thatllatimes at least one of
the members stayed in the channel, otherwise someone efge take the channel name,
threatening to displace or even destroy the channel contynuni

Changes of the policies came from two sides: Users gainechdams to circumvent these
policies with the help ofRC user botsshaping their own channel environment independently
of the network policies; and some networks implemented nelieips, mainly with the help
of IRC services

6.2 Policy Changes With Bots and Services

Users began early to look for means to change the policiesckhames and channels. Es-
pecially with channels, users employed so-calledr bots programs which stay around the
clock in an IRC network to fulfil some tasks, such as to keepcti@nel from being deleted
if the last user leaves it.

Similarly, some IRC admins administeretRC service bofa kind of admin-run bot) which
offered an modest version of nickname reservation: it kiadgked users to release nicknames
which were reserved by another user.

Both examples show an important principle in an environnieaitthe IRC constitutes: the
possibility to run programs which are not part of the senatwark, but attach to one of its
interfaces to offer some services not provided by the ndtweelf. And as the IRC client-
server protocol constitutes such an interface, simple IB&3ican set up such programs (bots)
and change the official network policies.

6.2.1 Channel Control with the Eggdrop user bot

«IRC bots are particularly important on IRC networks witholbannel registration services, such
as EFnet and IRCnet, and on networks that may prevent youmeh#eing registered due to
certain registration requirements, such as Undernet. €sethetworks, keeping a channel running
smoothly without some kind of IRC bot would often be impo#siis©

Bots can be called an ’all-purpose automated IRC clientesérLike a server, they run 24
hours a day. Like an IRC client, they connect to an IRC netwsdkfrom the network side

9A very interesting account on a channel community in theye8B0s, see Lawrie (2005) and other web pages
on the #gb channel website (http://uknet.com/gb/).
Pnttp:/iwvww.egghelp.org/whatis.htm (2003-05-16).

113

6 Nickname and Channel Ownership

they appear as a user/client. They are automated, becaysarthset up to fulfil automated
tasks (scripts) on behalf of the user. And they are ’all-psg), because they can be freely
programmed to do anything that a bot coder (often the useelis able to implement.

To give an impression of what a user bot is, | first outline tistallation and setup process
for a popular IRC user bot namé&aygdrop this shows the technical similarity of bots and IRC
servers. Both are to be configured in source code as well asghra configuration file; both
run as a server, waiting for incoming requests to be prodesse

I show how such a user bot helps to hold a channel, and prostties channel management
tools.

Eggdrop — Installation, configuration, basic usage
The main web site offers the following "short short versidor’ the set up of the Eggdrop IRC
bot'!:

1) Download eggdropl1.6.17.tar.gz from the eggheads ftp.
2) Telnet and FTP to the shell.

3) Upload eggdropl.6.17.tar.gz via FTP.

4) In telnet type tar zxvf eqgdrop1.6.17.tar.gz

5) Type_cd eggdrop1.6.17

6) Type_/configure
7) Type_make configcompiles all modules) or make iconfigllows you to select the modules to compile).

8) Type make

9) Type _make install DEST=/home/name/botdir

10) Switch to the botdir and edit the sample config file eggaranf, then rename it to something appropriate
(e.g. botnick.conf).

11) Type_./eggdrop -m <config file>

Figure 6.1: Steps to Set Up an Eggdrop Bot

Step 1) to 9) concerns the installation of the Eggdrop, amésscally the same procedure as
outlined for IRC servers:

e In steps 1) to 5), the version is chosen, downloaded, anddbes code packages
unpacked at the appropriate location in the file system

e Steps 6) runs the automatic source code configuration saifihg up the needed tools
to compile and link the program. Here, the user could alsoarthiect source code

Uhttp:/lwww.egghelp.org/setup.htm (2005-04-19)

12See above chapter 3.2.3.1.

BActually, the description assumes that the host where thgglig will run is not the same as the host where
the installing user is working, which leads to step 2) (thegls denotes the shell program of the host where
Eggdrop will run) and the uploading and 'telnetting’ in s$€3) and 4). Running Eggdrop on another host
is necessary when "clones” (multiple IRC client connecdditnom one host) are not allowed on the network:
see below chapter 7.4.2.2.

114

6.2 Policy Changes With Bots and Services

changes. Additionally, source code patches and so-cathedliles” are offered through
the web site which modify Eggdrop in specific w&ys

e Step 7) to 9) then compiles and links the program, and irsstiadb the given place in
the file system.

In step 10), the main configuration of the Eggdrop takes plahes is similar to the configura-
tion of the IRC server through the config file, editing the cgafation lines (chapter 3.2.3.2).
Eggdrop features more than 170 configuration options, grdup 25 categories, from "basic

settings”, "files and directories”, "log files” to the configiion single modules, one of the the
"irc module”. Examples for such settings are shown in aldponi 14.

Algorithm 14 Eggdrop configuration lines (examples)
What is your network?

0 = EFnet# 1 = IRCnet

2 = Undernet

3 = DALnet

4 = +e/+l/max-modes 20 Hybrid

5 = Others

set net-type O

Set the nick the bot uses on IRC, and on the botnet unless you s pecify a

separate botnet-nick, here.
set nick "Lamestbot”

Set the alternative nick which the bot uses on IRC if the nick specified
by ’set nick’ is unavailable. All '?" characters will be rep laced by random
numbers.

set altnick "Llamab?t"

Source: File [eggdropl.6.17/eggdrop.conf]. (Lines begng with a hash mark ('#) are comment
lines)

This example shows three settings. The fingt-type , lets the Eggdrop know which
network it is connected to, in order to use features and camdsahich are specific to the
respective IRC network. The second settinigk , provides the nickname of the user bot in
the network. As this nickname may be already taken, the getting,altnick , provides
a mechanism to automatically search for an unused nick, sided in the accompanying
comment.

The last step 11) finally starts the Eggdrop bot which cormtcthe preset IRC network
(also to be provided in the configuration file), and awaits c@nds from the user.

Using Eggdrop to secure a channel
In tune with our discussion of channel policies, | conceeti@ere on the channel-related
features of the Eggdrop.

14see http://www.egghelp.org/files.htm (2005-04-19),isest”Patches” and "Modules”.

115

6 Nickname and Channel Ownership

In order to issue commands to the Eggdrop, the user intevdttisthe user bot through
the DCC featur®. The first step to secure a channel is to let Eggdrop join tlzoél in
guestion. For this, the user issues the commantan #channel . Once joined, Eggdrop
stays in the channel until the user directs the user bot t@ldze channel, or some external
conditions aris¥. Eggdrop joining the channel alone effectively circumeethie "no-hold”
channel policy: When the last user leaves the channel, ebad still stays in the channel,
so that the channel is not deleted in the IRC network.

The Eggdrop offers further channel related features: WhyggdEop is made channel opera-
tor, it can be directed to execute a broad selection of cHanaeagement tasks: keep a set of
channel modes even when other channel operators changgerttantain a list of users who
are automatically banned from the channel as soon as they (@ainlist); automatically give
(auto-op) or take (auto-deop) specified users channel wpestatus upon joining the channel,
etc. All these settings can also be preserved (i.e. aregresesn the Eggdrop is quit, and
later restarted) by entering them into the Eggdrop configundile.

In this way, the Eggdrop bot (and other user bots as well)r®ffeany channel-related
features which may not be available per se from the IRC nétwor

Bots in the IRC

This section has barely touched the features and capebitifiered by bots. Already this short
examination has shown how the power that a user can exelnc@egh bots is a very important
point in the IRC «code» governance: Users, without beindRh dperator, administrator, or
coder, can change the «code»-implemented policies seedRth network’, and in this way
also actively 'voice’ their opinions and concerns over ppkhoices of the IRC network.

6.2.2 The NickServ service bot

The second example for early 'ownership’ policies via «cod#roduces a concept similar
to bots: IRC service¥. Like bots, they are single programs which connect to an |IR@es

in order to provide their service. But unlike IRC bots, theyribt connect to the network as
an IRC client, but as an IRC serv&r This has the advantage that the IRC service receives
all messages sent between the servers (especially thosh synchronize the internal IRC
network state); also, when the service sends requestseo s#hvers, no authorization has to

5Direct connection between clients, but initiated over RE Inetwork; see above chapter 3.1.1.3.

8such conditions include stopping the Eggdrop process,saodinection of Eggdrop from the IRC server.

"This may be one of the reasons why many IRC servers activelyiluit the connection of bots (see for exam-
ple Paulsen and Fleckenstein (1997)), and sometimes evenrhalemented sophisticated "bot-detection”
routines to enforce the user bot prohibition.

183ee also above chapter 3.2.1.4 for a short introductionridcss.

¥In some implementation, a special 'IRC service’ categoylieen introduced into the server code in order to
separate them from IRC clients and IRC servers.

116

6.2 Policy Changes With Bots and Services

be provided as it is treated as a server.

This section introduces an early service installed in otde&ope with the nickname "own-
ership’ problem. ThéNickServservice was created by Armin Gruner and Anton Hartl in July
199G° (one of them also administering an IRC sef¥grand existed until around 1993-1994
as "NickServ@services.de". Unfortunately, | have foundsaorce code version of the ser-
vice, so that the following description relies on secondchenfiormation in documents and
mailing list messages.

Functional description

The NickServ was quite non-intrusive: Users could regiataickname by sending a private
messag® to NickServ. When another user used the registered nicknth@&lickServ would
send a warning to that user that the nickname has been registéh NickServ:

SNICKSEIV- mmmmmmmm s e

-NickServ- | Attention - Nickname "Yurik" is already alloca ted by

-NickServ- ! vuong@mipsl.info.ugam.ca (The Roaming Soul) .

-NickServ- | This may cause some confusion. Please choose an other nickname.
-NickServ- ! If you are the real Yurik, but you are logged into a different
-NickServ- | computer, you should use the ACCESS command to t ell NickServ
-NickServ- | about this. Type /msg NickServ@service.de hel p ACCESS.
-NickServ- —---ecmmmmmm s e 23

The user was free to ignore these messages; the NickSernwotlidnforce any ownership
claims over nicknames, but instead served as a kind of diyereminder’ service.

Technical description

Although | have no source code available, the functionalkingy suggests the following de-

signt*: When a user connects to the IRC network, or changes heranickna message is sent
to all IRC servers informing them of this change. Having aseestatus in the network, the

NickServ received these messages as well, and checkedwheiciename against the list of

registered nicks. In case of a match, the warning shown alvasassued to the user.

Governance issues

Many EFnet users apparently enjoyed the service, leadirgy¢o one thousand registered
nicks (at a time where users where counted in the hunéfledBut although coded as an
informationalmechanism rather than one enforcing some kind of nicknanmewmship, there
were disagreements about that service.

2OHartl, Anton (1990-07-31)RC Service ProposaMailing list IRClist (1991)

210ne of the maintainers of NickServ, Armin Gruner, has beelR&hadministrator (http://irc.leo.org/irc_leo_
org_de.html (23 Jan 2005)), contributed to various seredec/ersions (irc2.5+), and maintained the IRC
server code version irc2.6 and irc2.6.1.

22See chapter 3.1.1.2

2\luong, Daniel (1992-01-0Forwarded mail.. Mailing list Operlist (1992).

24The server code version irc2.6.1, coordinated and maiedary one of the NickServ administrators (Armin
Gruner) contains special provisions for IRC services. théefore possible that NickServ made use of these
provisions.

25See above figure 3.4 on page 45, user counts in 1990 and 1991.

117

6 Nickname and Channel Ownership

In the irclist mailing list I have found a discussion threaldere an IRC admin admittedly
issued dkill command against the NickServ in May 1991, for which he citathbyance"
about the service:

And now, to clarify: what | did yesterday was not an attempt to compromise
the "security" of NickServ, nor was it sabotage. It was me fin ally reaching
my annoyance threshhold after seeing "Nickname is reserved " fill my screen

once too often. 26

There followed a debate in the mailing list, leading to anoftinial and informal) "vote"

against the NickServ service. But apparently the servicstinave been revived afterwards,
because in May 1992 there is a mail in the operlist mailingittsich mentions NickServ@services?de
But at the latest in 1994, NickServ ceased to exist:

Archive-name: irc-faq
Last-modified: 1995/11/28
Version: 1.53

[-]

(17) What was NickServ? Is NickServ ever coming back?

NickServ was a nickname registration service run in Germany Lt
was a bot that told people who used a registered nickname to st op using
that nickname. NickServ has been down since the Spring of 199 4.

It is not likely that NickServ will be back.
Remember, nicknames aren’t owned.

The examples of both the Eggdrop bot and the NickServ showtheWuRC «code» can be
expanded not only by changing the server code, but also hyemimg to the IRC interfaces
(client-server for bots, server-server for services).sTitiespecially important for users, who
otherwise have not «code» means to influence the policieemgnted in the IRC.

The next section turns to two examples of chamegistrationservices, which not only
give warnings, but install a full channel registration aodtrol/ownership environment. The
differences between them show how different policies aaéized with such services, partly
in code, and partly with administrative procedures accomipe the «code» structures.

6.3 IRC Channel Registration Services

Channel registration services change the no-hold polidyelgpin the Onet and EFnet net-
works: They allow users to obtain a longer term control ovelnannel.

In this section, | examine two examples of such serdtesd compare them in their func-
tionality and the policies behind them. These services wesated by the Undernet and

26wisner, William (3 May 1991Re: NickServ, NoteServ: Goodbysailing list IRClist (1991)

2’Casey, Jonathan B. (12 Jan 1992) AME FREE) NickServ on 2.7, New Email address and Voluinge
Mailing list Operlist (1992)

28jrc faq (1995)

29In this section, | concentrate ahannelservices only. DALnet also offers a nickname service, wiiike
Undernet has kept the no-hold policy for nicknames, so timtbmparison of services is only possible with
the channel services.

118

6.3 IRC Channel Registration Services

DALnet based on their philosophy to better support theirstsg®®, and these services can be
seen as an expression of this philosophy. They each offemptegistration of channels, but
various channel management tools, such as a channel apeiaarchy, additional channel
modes etc.

The DALnetChanSenservice and the Undern@/W service were both put into service
in 1995, While the DALnet has implemented what amounts to a full clemwnership
with no strings attached, the Undernet has installed a mixdofinistrative procedures and
technical service bot to enforce a temporary control g over a channel which has to
meet a number of conditions for its registration and use hEetwork, using the same basic
technical mechanism (IRC service bot), has built a servitering which differs in policy,
technical implementation, and administrative procedures

This section concentrates on thenctional side of these services, as has been found in
various documents on the websites of the networks, and ktsewsince again (like in the
case of the NickServ), no source code packages were publeljable for these services.
This may be one side effect of the main property of servicggimeral: they are rucentrally,
on one host, while IRC servers aiestributed and their source code has to be distributed to
others as well.

6.3.1 Channel Registration in the DALnet: ChanServ Service

DALnet, created in 1994 as user friendly alternative to th@&, runs a number of services,
including those which provide ownership to nicknames arahakels. The services are one of
the hallmarks of the DALnet:

DALnet stands out as being the largest IRC network with sesi It was indeed the first to have
successfully implemented ****Serv services for its useexkin 1994. The most well used of
these services are !NickServ ,!ChanServ and IMemo%erv.

Their ChanServchannel registration service offers what amounts to a fwihership of a
channel, i.e. the control of a user over the channel for tmatan of her ownership, with next
to no conditions attached. The registration procedurekegely automated, and therefore all
substantive policies are implemented into the serviceudgment or interference by officials
Or users is necessary.

30That is, serving them better than the EFnet, which uphold®tiginal policies regarding channels and nick-
names (above section 6.1); but there is indication thatroélarelated services have been recently introduced
or at least tested there: see (Riedel, 2001, ch. 11 "Seltyiand the Chanfix page on the EFnet web site,
http://lwww.efnet.org/chanfix/ (2005-01-19)

3iChanServ in late January 1995 (PJKevin and Dalila (2004)),the X/W service in February 1995 (Brown
(2003)).

32pJKevin and LadyDana (2004)

119

6 Nickname and Channel Ownership

Next to the registration and ownership enforcement, théseoffers additional features for
channel management, such as nominating lower ranking ehaificials with some power,
special ownership succession procedures, etc.

The following description is largely based on the help doenots available on the DALnet
website (PJKevin and Mystro (2004); PJKevin and quen (2004 command descriptions
are directly quoted from these two, if not referenced otlszw

6.3.1.1 Channel registration

Consistent with the philosophy of the DALnet to give users ¢guivalent of an ownership
over a channel, the registration process is fully automabedrder to register a channel, a
user simply sendsmegister command to the ChanSéfv

/chanserv register #channel password description

This command sends a message to Chart$eiith the to-be-registered channel name, a pass-
word which subsequently authorizes one as the owner of thiengt, and an obligatory short
description of the channel. This registration follows thmiueness” and "first come-first
serve” policy®: registration is rejected only if the channel has alreadgnbegisteretf. If
successful, the user is assigned the special ratbafinel founderShe now owns the channel
and has absolute control over it, enforced by the ChanServ.

Similar to the registration, the founder can release thamdlavith a simple command:

/chanserv drop #channel

An interesting situation arises in connection with the nikae registration. In order to register
a channel, the user needs to be registered with the NickSekmame registration service.
The NickServ implements an expiration policy: If a user ke nick name unused for 30
consecutive days, the nickname expifeSince ChanServ identifies the founder through the
registered nickname, the channel would automaticallyrexas well. For such a situation,
ChanServ allows the founder to name a successor who is asidiiga channel founder role if
the original founder’s nickname expires:

/chanserv set #channel successor ni cknane

33In order to register a channel, the user must also use a mokmagistered with the NickServ nickname
service.

34The commandchanserv has to be explicitly implemented on the IRC client as it isqui to the DALnet.
If not implemented, the user has to use the generic comrnmasd chanserv@services.dal.net
instead.

35See above section 6.1.2.

36The description does not make clear what happens if the ehaiready exists in the DALnet.

3’pPJKevin and LadyDana (2004), chapter 1 "Requirementsjtidsiland Responsibilities”.

120

6.3 IRC Channel Registration Services

The succession process is quite elaborated, but fully imefged in the NickServ code; no
human intervention is necessary:

If the founder’s nickname expires, and that channel has eesgor, the following will occur: A
memo is sent to the channel’s succesor with an AUTH code. Tlibeessor must use the AUTH
code to authorize himself in the channel within ten (10) ddfythe successor does so, a random
password is generated that can be used to identify and bett@rfeunder. If the successors
nick expires, or the successor doesnt take any action wighir§10) days, the channel expires as
normal. A user can prevent himself from being added as a ssocé a channel if he has enabled
the NOOP option on his nicknanié.

Another interesting feature is the the ability to transf@nership to another user:

/chanserv set #channel founder
I nf ormati on: The FOUNDER argument of the set command will allow the
user that uses this command to change the channel founder to h imself.

Not e: The nickname that the user is using must be registered or the
command will not work °

This command contains a peculiarity: There is no mentionryf action by the original
founder other than passing the channel password. The coEiseg is that ultimately, the
password is the only authorizing information necessanafonannel. If a user somehow gets
access to this password, no further action from the foursieh as explicit transfer to the
other user, is necessary to become the new founder. Warmrige documentation to keep
the password secret and never share it with anyone else i$sifipie view#°.

6.3.1.2 Channel management features

Once the channel has been registered, the channel fourglacb@ss to a number of features
for the management of the channel. They roughly fall into tategories: nominating channel
officials, and special channel properties and commands.

Channel officials
ChanServ allows the founder to nominate other users for tiditianal official roles in the
channel. This results in a five-level hierarchy shown ingahlL.

On top is the founder, with all powers of the other roles, dredability to nominate super
ops.

The super op(SOp) acts as a representative of the founder: she can németotbe auto
ops, give or take ChanServ-enforced permanent channe] beyskick all users out of the
channel (with the exception of the founder; but not exceptither SOps).

38pJKevin and Mystro (2004), chapter 11.16 "Setting the sssmeof the channel”

39pJKevin and Mystro (2004)

40see for example PJKevin and Mystro (2004): "Under no cirdamses should you give out the password to
anyone. DALnet will NOT help with takeovers if you have sithy@ur password”.

121

6 Nickname and Channel Ownership

‘ Role ‘ Description
Founder Owner of channel, absolute control
Super op (SOp) Nomination of AOps.
Auto op (AOp) Automatically assigned chanop privileges; override bantsiavite-
only for oneself; take chanop status
Channel operator (regular channel official)
User (regular user)

Table 6.1: DALnet Channel Service Officials

Theauto op(Aop) acts as a superior for normal channel operators: Shagsign herself
chanop status, either automatically upon joining the cehnor by requesting it from the
ChanServ. Also, she can override an invite-only mode or igblaban for herself, can take
away chanop status or kick everyone out of the channel (@geoMno superior is present in the
channel).

Channel properties

The ChanServ enhances the normal channel modes in certgs) \@acess can be limited
only to users who have a nickname registered with the NickSeivice; changes be limited
only to ChanServ-backed officials (AOp, SOp, founder); carotel membership limited to
these officials, etc. Also settings more specific to the ngéracan be made: It is for example
possible for the channel founder to set the maximal numbenenbers in the channel to
some limit which then cannot be overridden by any of the lowfécials: as soon as one of
the latter changes this limit, ChanServ immediately resétsthe founder-given value.

A last peculiarity of the ChanServ implementation concétsigelationship to the channel.
In contrast to channel bdfsand the X/W service examined in the next section, the ChanSer
does not keep the channel open by joining it as a pseudo-ltsisrwell possible that the
channel ceases to exist (all members leave the channely aser different from the founder
recreates the channel, thereby becoming channel opefatutahannel. But the ChanServ
keeps all information about the channel, including all ciedirmodes and the ban list; and as
soon as the founder chooses to reuse her channel again pitysietakes the channel with
the help of the ChanServ and reinstates all modes and baraved within the ChanServ.

It serves as a 'backup copy’ of the channel state, and enfaifcie registration when the
founder deems it necessary.

41See above section 6.2.

122

6.3 IRC Channel Registration Services

6.3.2 Channel Registration in the Undernet: The X/W Service

The Undernet shares a similar philosophy like the DALnehuitd a user friendly alternative
to the EFnet. The most distinct feature of the Undernet mamagt are its various commit-
tees which coordinate everything from code developmemgsacom), network management
(routing-com) and channel service management (csenacpliblic relations and documen-
tation (user-com). Each is constituted of a group of volargavho contribute and manage
contributions from the usership-at-large.

Consequently, the approach that the Undernet has takerdinegahe channel registra-
tion service differs from that of the DALnet: an elaboratetk wf committee-evaluated and
«codex»-implemented registration process, with the regutthannel control understood as
a temporarily assigned privilege rather than a full ownigxsfihe institutional side is repre-
sented by the channel service committee (CService), artédt¢heical site by the X/W channel
service bot&.

6.3.2.1 Channel registration

[16:50] <TheBeast> "Channel registration is not meant aseans to start a new channel.lt is
meant for previously established channels to have an apmitrto have some stability.If you are
first starting a new channel, then just start using your chbaamd give it time to see if a reasonable
user base develops to justify registration." [L62]

The difference between the DALnet ownership and the Undgainésophy expresses itself
most vividly in the registration process. Whereas in thenar registration is just one com-
mand away, in the Undernet, a number of conditions have todigand a lengthy application
process passed. The whole policy is written down in a sp&Ciahnnel Service acceptable
use policy” (AUP)*,

The two main conditions are:

ONE PERSON PER CHANNEL REGISTRATION A person is only allowed to register one chan-
nel. The Undernet policies emphasizes that this has to bal @eeson, not an unique
user/host pair. This also is an indication of their policyegponsible control instead of
absolute ownership.

ESTABLISHED CHANNEL ONLY: The channel has to be already established, meaning that it
enjoys a stable and continuing usership.

42pctually, these bots were replaced in 2001 with the CMastér Brom the functional side, there appear not
many differences, so that | have limited my examination &XiW service bots.

43Undernet-CService (2003)

4Undernet-CService (2002)

123

6 Nickname and Channel Ownership

In order to show that the second condition is met, the appiibas to name ten other users
who are regular members of the channel and agree that theampshould be the one who
registers the channel.

The application is done through a special web page on thevi¢Beawreb site, which trig-
gers a longer process including both technical checks avidweby the Channel Service
Committee. The committee reviews the application for itsiteeand decides on acceptance
or rejection of a registration. The whole process is desdris follows:

After your registration form is received by the CSC, the sunpgr email addresses are checked
and each supporter is mailed a copy of the application. Tipdicgtions is then posted to the
regisistration WWW pages under new applications. They efitein this category for 10 days,
during which time other people can object to the channel Inyguthie web pages. The application
then moves to the "Pending" section. Here, the applicatimaslso reviewed by CSC to make
sure they meet the criteria for registration. If the apgiaais approved, you will receive an
approval email and instructions on where to obtain the celmanager's FAQ. The channel is
added as soon as it is approved. The entire registratioepsdakes 10-15 days to compléte.

Only if the committee has approved the registration, théiegpt is assignedhannel manager
for the registered channel and given access to the X/W clhaenace bots. But in tune
with the overall philosophy, the responsibilities for tHeaonel only start here. The channel
manager and other officials nominated by her, as well as thersl users have to show
that they regularly use and maintain the channel. This deduregular appearance of the
channel manager in the channel, as well as continuous uke ohtinnel by its members. The
committee appears to regularly check on the activity of thenoel, assumedly also with the
help of the X/W channel service bots. The AUP emphasizes:

Channel Services regularly monitors all registered chisrfoe activity. If a registered channel is
not active, X will be removed from the channel. Channel mangagre expected to be active in
the channel. If you are gone for more than 21 days, X can bevedfoom the channel or in very

active channels, a new channel manager can be elected bigthevel ops?®

In addition, the Undernet regularly arranges so-calledgtbpols”, IRC sessions where appli-
cants or channel manager are educated about the regisirigouse of the bots, and "other
stuff4’.

Finally, to underline the commitment of the Channel Sendoemittee to their policies,
their web site also contains a "Channel Service committégegjnes” documerif explaining
their institutional structure including the what they cathos”, as well as organization and
procedures.

4SUndernet-CService (1997)
46Undernet-CService (2002)

4’See http://cservice.undernet.org/main/opschool/strapts of past sessions are also made available.
48Undernet-CService (1998)

124

6.3 IRC Channel Registration Services

Taken together, the Undernet puts a heavy emphasis on theadjgm of institutional struc-
tures and procedures in order to allow users a conditiomagdeary control over channels.

6.3.2.2 Channel management: The X and W channel service bots

Once registered, the channel manager is responsible factalities in the channel. In turn,
she is given control over this channel through the X and W okHbpots: She can name channel
officials, and a number of commands are available to enftweadtions of those officials, and
in general to manage the charfiiel

Channel officials

Similar to the DALnet ChanServ bot, X/W allows the channelhager to nominate other
channel officials. But in contrast to the former, it has a 5@l hierarchy, grouped into 9
categories; the channel manager as the highest officiaptesievel 500 (table 6.2).

Table 6.2: X/W user levels
‘ Level ‘ Title of Official ‘ Main Powers

500 Channel Manager | Sets privileged X/W modes
450 | Trusted Channel Admin Set main X/W modes; tell X/W to join/part channel

400 Userlist Admin User list access (add/remove/modify); expanded X/W
status information

200 Userlist Operator Clear expired bans in ban list; kick user groups

100 Channel Operator | Give or take chanop status, suspend user’'s X/W access

for specified time

75 New Channel Operator Ban and unban channel users

50 Channel Regular Kick single channel users; change channel topic
1 Minimum Access Login and logout into X/W; basic X/W status informa-
tion
Everyone else . .
0 Mostly commands for channel information

(i.e., notin user list)

The rationale behind the 500 levels lies in commands whichdcaffect other users and
officials, such as channel kicks or bans. These commandsndgmoplied to usertower in
the level than oneself. For example, an "userlist admin”rmaminate other official roles. But
if she has level 444, she can only nominate others up to le\&l As one consequence, there
can be only one channel manager (level 500), because sheighastiranking official — can
nominate others only up to level 499. This system allows tlllfine-tuned hierarchies inside
one level, where officials with higher level values (but sditle and commands available)
control those with lower level values.

“9For the following details of the X/W service bot, see Undei@&ervice (1999).

125

6 Nickname and Channel Ownership

X/W features

As for the commands or powers available, they are mostlyiairto those available in chan-
nels, or those in the DALnet ChanServ: to set channel moddsck users from the channel,
or to ban them for a longer periefd Additionally, commands exist to manage the user list,
ban list, and X/W modes.

It is not necessary to list all these commands here; it ssffioesay that they are again
enforced by the X/W service bot on behalf of the channel @fiisci Instead, two examples, a
command and a set of X/W modes reiterate a point made abokie thapter on sanctiofs
How «code» can be shaped to retain a balance between the gioereto lower-level officials
and the control over them:

SUSPEND COMMAND. The suspendcommand gives officials the power to block access of
lower level officials to the X/W for a specified duration. Theamand allows to spec-
ify the time in units of seconds to days, so from short-tersaioctioning to a long-term
demotion is possible. A correspondingsuspend@ommand allows to lift the suspen-
sion as well. This command is positioned fairly low in therhiehy (level 100 and up),
so is implemented to serve as general power control tooldeivthe channel operators.

OFFICIALS FLOOD CONTROL Chapter 5.4.2 has introduced the problem of flooding: users
harassing other users by sending a rapid succession of gessgathem. The X/W
enforced modeBloodPro(kicks, topic changesMassDeopPrdtaking operator status
from a user), andNickFloodPro(nick changes) deal with such situations: each of them
can be set to a numeric value. If a user or official sends mane ‘tralue’ commands
associated to each of these modes in a 15 second time fraemeshie is automatically
kicked from the channel, and suspended from the X/W. In tlse ad FloodPro and
MassDeopPro, the associated commands are operator-aegy smthis feature again is
mainly geared towards control of channel officials, rath@ntusers. In contrast to the
suspend command though, these modes can only be changeghbwihking official&?.

The X/W offers the officials not only commands and featureelpimanage the channel, but
also to manage the relationship between the officials. Amde@hll this looms the control of
the Undernet channel service committee which enforcestilesophy of the channel regis-

tration as a temporarily given privilege given to those whaintain a usable and popularized
channel.

S0Undernet-CService (1999) contains a list of all X/W comnsand
SIChapter. 5

52FloodPro: channel manager only. MassDeopPro, NickFlomdRusted channel admin (level 450).

126

6.3 IRC Channel Registration Services

Summary — Nickname and Channel Name Ownership

This chapter has examined the ownership issue of identifiehe Internet Relay Chat: Nick-
names and channel names. For both, the initial design oRBedetermined a simple set of
policies: They had to be unique in the network (uniquenelsyjothe first one to take a name
claimed it for the duration of its use (first come-first senas) soon as the name was not used
anymore, it was free to take for anyone else (no-hold). Thesieies were mainly chosen out
of technical reason, but upheld by some networks, althosghsutand channel groups voiced
the need for policies which would allow for a long-term useaafame.

As is often the case in such an environment like the IRC, teehmeans were found
which gave users the ability to reformulate’ these pokciaser bots programs which run
continuously to provide specific services possibly notlakée in the servers. In the case of
channels, the application of such bots allowed to hold omeébs, thereby circumventing the
no-hold policy, in addition to many other channel managerteemd other) tools that such bots
offer the user. Notably, these features are available gir@regular connection to the IRC
(the IRC client-server protocol), without any changes mdgbrver code.

This potential that bots offer was also exploited by the IR@as. Some networks deviated
from the original name policies and installsdrvice bots officially approved bots which
connect to the other servers as a special server, therebgglhizeir authority.

Two different implementation fazhannel registration servicasere examined: the DALnet
NickServ, which implements a fully automated channel nameershipscheme, with next to
no conditions attached to its use. In contrast, the Undeti&tservice employs an sophisti-
cated registration procedure which includes technicalelkas committee-approval elements,
and enforces a policy which gives a temporary hold over amélamder the condition of con-
tinuous active use and responsible management of the dharimeh is regularly monitored
by the Undernet. Using the same technical mechanism of tiidyoth network realized a
differing set of policies for the registration of channels.

The topic of bots served to show some aspects of the «codessrgnce topics examined
in previous chapters:

IRC CONSTITUTION AND INTERFACES The initial policies for names in the IRC were ap-

parently a byproduct of the implementation, a consequehdtieectechnical structure.
The formulation therefore happened entirely in «code». il8rhy, but apparently un-
expected, was the emergence of user bots, empowering wsactitely shape their
own policies and override those of the network, it is basethen<code» constitutional
structure of the IRC, enabled by the existence of the ckenterinterface the power

of user bots does not use any addition in the IRC server cadés b result of detaching
the IRC client from the interactivity of users who insteadgnammed it to act on their

127

6 Nickname and Channel Ownership

behalf. Similarly,service botgrovide their services not through special facilitation in
the server code, but simply by being authorized to use theesserver interface, to
provide their centralized service. The principle of celityran a distributed network,
examined later on, here also posed a problem in my analysisolNrce code for either
service bots was available for examination.

IMPLEMENTATION «CODE» RULE PATTERNS It is worth mentioning how the set up and
configuration of the Eggdrop user bot resembles that of tit& $Brver as outlined in
chapter 3.2.3. All elements — from patches and source caalegehto configuration file
changes — are present here. The breadth of functionaligyesifhere makes the user
almost an IRC admin herseéif

RULE TYPES. The different approaches to channel registration have/siioe application of
several rule types: In the DALnet ChanServ, fully automated to its principle of full
ownership, implements its substantive rules in «code». ot registration and re-
lease of the channel, but the succession policy and nickeapieation all are examples
where the policy is formulated and enforced through the Seanservice bot.

In contrast, the Undernet channel registration serviceehasen to formulate their reg-
istration policies in a mostly administrative way, wheré&métely the members of an
Undernet-official committee decides over the merit of anliappon; the X/W service
bot comes into play only after the registration has takeonepla

After the registration, both ChanServ and X/W offer the s&gir substantive and re-
medial rules similar to those in normal channels, but affgrnore options and better
enforcement due to the central power of the service botsetisa controller-selecting
and constitutive rules (channel official hierarchies; sigpand flood control against
channel officials in X/W), much finer grained as those avédabnormal channels.

>3Indeed, the Eggdrop web site also features a script whiolvalto connect several bots to a "botnet” network:
see http://www.egghelp.org/netbots/index.htm (200526%

128

7/ Controlling the Controllers?

IRC operators or IRCops are special users who have privdlegeess to a number of com-
mands in order to help maintain servers, network, and usksssuch, it is the single most
powerful role inside an IRC network.

The role of the IRC operator is entirely «code»-based: withioe provisions in the server
code, there would be no such role. As a consequence, theagrp@s well as the checks and
balances depend on the «codex» rule design agreed upon BGhedministrators and coders.
Each IRC admin has the power to assign and revoke users tteplp@ilege.

Section 7.1 gives an overview of the IRC operator role, idiclg an example of how a
network related command can be abused to take over a channel.

Section 7.2 gives an impression of the reputation of and s@umrounding IRC operators,
as well as (lack of) nomination process for them. Judged Is; there appears a certain
'mystic aura’ around the IRC operator role: a closed grouttwo clear rules how they can
joined, and discrepancies between what they should do, @andHhey actually behave.

In section 7.3, | show how «code» can help to provide the parcy in a system in
order for the participants to enter into disputes in the fptate. The extent of information
about what is happening in the IRC — here, the actions by IR€atprs — determines how
informed the participants are. This is also reflected in B@ tode, innformationavailable
to participantsnoticesautomatically sent by the servers upon certain actions eewte, and
loggingfacilities in the servers.

Finally, section 7.4 examines UWorld: a service bot intrmetiin the Undernet which
expands the powers of IRC operators and other users to tch#aonels, and issues sanctions
in ways not possible in other networks. In order to checkehmsvers, UWorld has a separate
access system as well as notices and log facilities implesden heighten the transparency
of some actions.

7.1 IRC Operator — Power and Control

The IRC operators occupy the role of the main officials inglte IRC: users appointed by
IRC administrators to take over server- and network- and-tedated administrative tasks,
and for these purposes given access to privileged commands.

129

7 Controlling the Controllers?

This role has been present in the IRC from its inception od,iarapparently based on a
similar role in the predecessor of the IRC, the Bitnet Rel&atCas the description of their
"Relay Operator” shows:

The day-to-day maintenance and operation of a Relay sesveariied out by the "Relay Op-
erator", an individual or group of individuals who are respible to the institution’s network
administrative authority. The Relay Operator is also resfie for implementing corrective ac-
tion to temporarily or permanently terminate a user’s astethe Relay in cases of violation of
the guidelines described in other sections of this docurhent

In a similar fashion, IRC operators manage the day-to-da&yaions of an IRC server and the
IRC network, and can temporarily terminate a user’s access.

Technically, in order to become nominated an IRC operatw,|IBRC administrator adds an
specific config line (O-line) into the configuration file, prdwng the IRCop’s nickname and a
password (algorithm 15).

Algorithm 15 "Operator” configuration line (O-line)

O: authorize operators. Fields are, in order, host name the operator must
be logged in from (wildcards allowed), operator’s passwor d, operator’s
nickname. The first example allows me to become an operator from any

machine in BU.EDU by typing /oper wisner foo.
i

O:* .bu.edu:foo:wisner
O:bu-cs.bu.edu:bar:jsollyxcode

Source: [irc2.1.1/example.conf:27-33].

Once nominated this way, the IRC operator connects to then&®@ork as normal user,
and then issues theper command (see figure 7.1) in order to be recognized as IRCop by
the server.

The main duties of IRC operators lie in three areas, in therasflimportancé

SERVER MAINTENANCE: The main IRCop duty concerns the smooth operation of theeser
of the IRC admin who nominated her. Various conditions frarver code bugs to in-
creased system load can lead to interruption of the operatibich immediately affects
the entire network. The IRCop helps by restarting or entisédpping the server process
in case of disruptions, next to other server-related tasks.

NETWORK MAINTENANCE: In addition to server-related duties, IRC operators playra-
portant role in the administration of the entire network.fdnot, the group of IRC ad-
mins and IRC operators constitute the highest organizalienel in an IRC network,

!Bitnet-Relay (1986)
2See for example DALnet (2003); also Riedel (2001) for a dededccount of the network-related duties

130

7.1 IRC Operator — Power and Control

since no corporation or other single entity above them gxists part of these main-
tenance tasks, IRCops have access to commands to revievetihierk structure and
make changes in the interconnection between servers.

USER ASSISTANCE IRC operators are also available for help and support cdraikers, but
this duty is seen as least important: "[helping the userk piibblems] is done primarily
in aIRCoper’s "free time" if they choose so training and eigrece as a helper is not the
primary focus or major need” When users threaten stability or operability of a server
or the entire network though, actions against them beconre mgportant as they touch
the higher ranking duties of IRCops (server and network teasnce).

To fulfil these duties, the IRC operators have access tolpged commands listed below
(table 7.1).

Server-related commands Network-related commands Other commands
Command Description Command Description Command Description
Irestart Restarts IRC server process ltrace server Returns info about all servers || /kill nick Exists user nick from network
- between local one and server
/die Stops IRC server process /wall message Sends message to all
- /connect host port Local server connect to host connected users in the

/rehash Rereads ircd.conf on port. Only hosts specified network

configuration file into server in configuration file allowed.

process loper nick password | Authorizes oneself as IRC

/squit server Breaks link between two operator. nick / password must
remote servers (“server quit”) match ircd.conf

Table 7.1: IRC operator privileged commands

From the user perspective, the most visible power of IRCeapgamly is the/kill com-
mand already examined abdveBut the power with the greatest potential for disruptioa ar
the network-related commands, since they can affect liggteousands of users, for example
if an IRCop breaks the link between two servers in the midféite@network: In all channels,
the membership is split in two, so a possibly large part ofrtteanbers suddenly disappear
from the channel (net split). The following show case iltagts this power.

Show case: Gaining channel operator status via /squit

In order to give an impression o the power of such commandsnaailing list message give
details on an abuse of tfequit command to gain channel operator status (called a "channel
takeover”):

"[H]e /SQUITed his server to create a chanop who then deofiexf the users ont he channel
except himself and then signed off. After that, he AGAIN s$edia server (his personal server this
time i believe) and restarted ops on the chanpel.”

Here is the step-by-step reconstruction of the channebtade

3DALnet (2003)
4Chapter 5.1.
Srandall@sumter.cso.uiuc.edu (1991-10-$ppwbabe’s abuse of SQUNIailing list Operlist (1992)

131

7 Controlling the Controllers?

1. The starting point was the channgiottub ©, where a usespewbabe was banned
from (the complaining user apparently had IRC operatoustah his server).

2. spewbabe countered first by severing the link between his local seanerthe rest of
the network with/squit (net split). This left him with an empty channehottub
on his side of the net spilit.

3. Since empty channels get deleted by the sysspewbabe could recreate the channel,
and automatically gain channel operator status.

4. The server rejoined with the network, and the the two cbhparts were put together.
Becausespewbabe was channel operator on his server, he was now channel operat
on the channel where he had been banned from in the first place.

5. He now "deoped” (take operator status) from all other dehoperators, leaving him
the only chanop on the chanrfel.

Although this might sound complicated, the other altexsatio/kill all users in the chan-
nef, would have taken much more time. More importantly, it woliéve resulted in a notifi-
cation of all IRC operators of 20-3Rills by one IRCop, arousing strong suspicions of the
legitimacy of such an action. The way it actually happeneditfin, only one to twdsquit
notifications have been seen, which certainly did not getatgntion by the IRC operators.
So it strikes a good foresight (or a deliberate set up) treuer who sent this description to
the mailing list logged the events as happened to documisntiksbehavior.

7.2 Nominating IRC operators and IRCop Netiquette

Positioned between the IRC administrator and the simple tis=IRC operator is in an awk-
ward position: on one hand, she derives her legitimacy dmyugh the assignment lpne
administrator in the network without any visible processtéy vetoes etc.) or coordination
between the admins. On the other hand, duties and powers tgiveer encompass the whole
network. This discrepancy is reflected in the documents @ofiRpolicies.

"How do | get to be an IRC operator?”
The documentsof IRC operators indicate that, despite theepand importance of this role,
the large IRC networks have not chosen to implement moredbpnocedures for their nomi-

5The plus sign also denoted a named channel for a short tinoeebigfwas superseded by the hash mark. So
+hottub is the same a#hottub .

"According to the short description, the user did anotsguit ("his personal server”). This appears strange,
since he already gained sole channel operator status irrshpléce.

8according to the description containing around 20-30 membe

132

7.2 Nominating IRC operators and IRCop Netiquette

nation, leaving it to the individual IRC admins. Accordipgihese documents draw an some-
how idealized but non-informative way on how to become an tp@rator: Build up trust
with IRC officials, always be helpful in the network, etc. Adixts agree in one point though:
The best way to never been assigned IRC operator privilsgesask for it. For the Undernet:

«How can | get to be an IRCop?

The easy answer to this question is that if you go around gsk€@ops how you can get to be one,
you probably will never be one. There is no list of potentRClops or any kind of application
procedure. There are actually two ways to become an IRCapt \Biur own Undernet server or
get asked by an admin to be an IRCop on their server. Startigg\veer is not practical for many
people, so the latter is the more common way. Here it becorhi#g®ba Catch-22 —an admin will
only ask someone they trust to be an IRCop on their serveif they think someone is cozying
up to them just to get an O:line, they won't take that persaiogsly. You must be asked by a
server admin, and asking an admin to make you an IRCop is avsyref never becoming one. It
is actually very difficult to become an IRCop on Undernet, flease don't think this means you
can't help. #userguide, #Help, #mirc, #cservice, and theynmther help channels are always on
the lookout for well-intentioned people who really do jusint’to help out without looking for a
quick way to get an O:line and become an IRCap. »

And similarly, for DALnNet:

The position of an IRCop is not one which can be applied fas, giranted by Server Administra-
tors and tends to be given to people they have known for a nuoflyears either on IRC, or in
real life. Therefore, if the role of IRCop is your goal, yoedikely to become disappointed and
disillusioned over time. [...] There is also one sure fire Wwagnsuring that you never become
an IRCop and that is by 'shopping’ for an O:line, in other wsrdontinually asking one or more
Server Administrators to make you an IRCop.

This lack of transparent criteria and procedures of suchrgoitant official role leaves an
impression of obscurity and secrecy which finds its contilmnavhen looking at policies and
norms which are to guide IRCop behavior.

IRC operator 'etiquette’

Documents paint a mixed picture regarding the behavior dftieg IRC operators, inter-
spersed with "etiquette”-like expectations on how theywdtidoehave. The earliest reference
for the responsibility of IRCops is short, and rather fattbhan providing any guidance:

Obnoxiousness is not to be tolerated. But operators do maofkilklightly. 0

One reason for this terseness might be that back then, thberuwh participants was small,
so that they knew each other well, and the difference betwreple users, IRC operators and

SUndernet-User-Committee (2001)
0irc2.1.1/doc/MANUAL]; see also Reid (1991) who discuspesver, etiquette and behavior of IRC operators.

133

7 Controlling the Controllers?

IRC admins were blurred; most users in the early IRC were IBQias, and therefore also
IRC operators as wéfl.

An early attempt to formulate an "Etiquette Guide" for IRGeogtors was made at the time
when the EFnet emerged. But despite its title, it contaiss letiquette rules’ than rather a
description of the commands available to them. Only un$jgelanorms are given, such as:

/kill and /wall are special operator commands. You shouklthem with care, and only if abso-
lutely needed?

And, to dilute the normative character even further, thegasagraph states:

Please let me know if there should be any additions to thideguAgain, this is not MANDATORY,
this is just a GUIDE. Please conduct yourself as an IRC Opevatuld...you are looked upon for
assistance, both emotional and mental.

This guide was updated in January 1991, in May 1992, and ag&acember 1994. The last
rewrite, claiming to be "more a reflection of the currentes@it IRC", is fairly pessimistic on
the effects of norms, or such a guideline. See for exampledhement accompanying the
/kill command explanation (last line):

/kill is a special operator command. The format is as follows

/kill NICKNAME comment.

Comment can be a phrase of almost any length (within reasah$laould be used for specifying
the reason of the Kill.

Example:

/kill jonathan hey, this is furt?

And even more explicit:

Don't bother wasting your time with #twilight zone. Thereanany operators on many hub
servers (including many found in this channel) which putpmknow something but in fact know

nothing. They will most likely ignore you, make fun of you,use you, dump your private mes-
sages to the channel, etc. In general, many operators (akpé&we of those on #twilight_zone)

are not the sort of people you'd want to do this as a paid jobsdt do anything unless it serves
them in some way?

This view from 1994 did not change in 1997, according to aaotRC operators’ guide:

From what I've seen, most opers look down on users, make ftimeofi, and ignore ther?.

1This also may be the reason why in early documents "operatmt™administrator” are sometimes mixed up.
See for example [irc2.1.1/doc/INSTALL], where one sectitie reads «<OPERATOR PRIVILEDGES: How
to become the IRC Adminestor on your site» (errors in theioaigext).

Internet Relay Chat Operator Etiquette Guide 1991-1994jwe 1991: [irc.2.6.1/doc/US-Admin/Operators]

Bibid.

MInternet Relay Chat Operator Etiquette Guide 1991-1994jme 1994: [irc.2.8.21/doc/US-Admin/Operators]

Sibid.

8Brinton (1997)

134

7.3 Notices and Logs

But the author takes a more pragmatic view by adding:

There are a lot of politics that go on in the irc operator comityuand, whether you like it or not,
these politics are here to stay. Fighting this and compigiabout it will get you nowher¥.

As for social norms, he offers more generic ones, such ag esimmon sense when apply a
/kill against a user, and to give reasons for such actions, hedp wslers, or to regard the
social order of opers and admins:

On occasion, opers have their disagreements. There is &dipecking order that exists in the
oper ranks, usually with hub admins and opers being more 8piolil than leaf admins and opers.
It's generally not a good idea to try to win an argument witd freople who are providing your
connectivity to the IRC network. For that matter, it's gealrnot a good idea to try to win any
argument at all. If you do have a serious problem with anodper, and can't resolve it directly
with him/her, go to your admin about it. Your admin can theprapch the issue with the other
oper’s admin, and if that goes nowhere, with their uplink adnThis is a quick way to make
enemies, so make sure it's important to you before doin it.

Apparently, the role of IRC operators always remained acoaf disputes, controversies and
power struggles. Part of this may also be attributed to tloevtyr of usership and number
of servers connected, leading to the need of more IRC opsraiananage the ever growing
network. The creation of other network with the explicithated goal to offer a more user-
centered network (Undernet, DALnet) can also be seen asardc these problems.

7.3 Notices and Logs

The previous section has given an impression of the cowgntiole of the IRC operator.
Appointed by nomination by one IRC administrator based otionmal or even discernible
criteria, but given power over the network and the users.p8sgd to act for the common
good (mainly network stability, but also user help) of théwwk, but apparently pursuing
other interests as well, for which they even actively abbsé powers.

Beyond «code» tools which implement mechanisms to chedetphewers, such as limiting
the scop® or functionality’® of IRCop commands, an important prerequisite for any cdntro
is the capability taobservethe actions, to monitor the behavior. In a social setting tike
IRC, the ability to monitor the controller offers a kind ofu@terbalance to their powers, and
a means to foster a ‘community’ to enable mutual monitorardyehavior correction through
informal controf! by the community.

Yibid.

Bibid.

19 ocal operator role/kills only for locally connected users or entirely revoked: seavalthapter 5.1.2
20Limits in K-line access to IRC operators: see chapter 5.3.

2ISee Ellickson (1991, p.131).

135

7 Controlling the Controllers?

In the IRC, there are three groups who may engage monitdR@gdperators: IRC admins
(in addition to their «code» means to limit the powers), otfC operators (as peer con-
trol), and users which are the most affected group of IRCapsbns. Hierarchically, these
correspond to a top-bottom, peer, and bottom-up control.

These parties do of not stand by themselves: One could waljime that a dispute by a
user is easier resolved if some records are available to BRI@ops or admins which can help
to evaluate the claims. Similarly, mutual information abaations between IRC operators,
together with tight communication connections betweemtlghannels, mailing lists) might
facilitate norm building and mutual monitoring between lR€ops.

In any case, in the IRC server code, two mechanisms can beglisthed where the servers
automatically transmit information about IRCops’ actidoshese groups:

Notices are sent automatically upon the execution of certain astiaith the main audience
being IRC operatofd and users.

Logs are written into files by the server, and therefore are piiignan IRC administrator tool
to review logged actions after they happened.

7.3.1 Notices

"The hole point of KILL's being visible to everyone is thatneeded, futher explanations can be
asked.?3

One mechanism to make system actions transparent to otiegrstaces These are text mes-
sages sent by the server when some action — such as a commsaochéyiser — is executed.
Depending on the implementation, notices can be sent ugosuttcessful execution, but also
in case of errors, or other conditions.

An important characteristic of notices is their target odi@aace. In some cases, this audi-
ence is hard-coded to a fixed group (e.g., all IRC operatorsthers a more variable group is
given access to it. And finally, the type and amount of the eatstof the notice might differ.

Basic functionality and implementation

The functionality of notices can be shown by reviewing thgusace of actions when an IRC
operator issues ill command®. The corresponding functiom_Kkill() in the server
code first checks two conditions (Is issuer an IRCop? Is tigetaiser in the network?) and
(upon passing the conditions) executes two actions (ds¢ad@nchronization, disconnection
of the target user); in all cases, notices are sent out.

22which includes IRC admins who mostly will be IRCops as well

233avela, Markku (1993-02-2@per should not just sign on to IRC and then disappedailing list operlist
(1993)

24Chapter 5.1.1

136

7.3 Notices and Logs

One kind of notices is self-evident, as it derives from thenowand itself: Those sent to
the command issuer, either on the successful executiomeotadsome error or rejection, and
possibly those sent to the target(s) of a command as wehligicase of #Kill the affected
user.

My focus here lies on the other notices which do not direadlofv from the command
itself. Of the many code lines in the function which send ragss to users (command issuer,
target user) as well as servers (database synchronizatimaode line sticks out:

sendto_ops("Received KILL message for %s. Path: %s!%s", us er, cptr->host, oldpath); 25

In this example, the functiosendto_ops() sends the message "Received KILL message
for”, followed by the nickname of the exited user and a hoghpa all IRC operators.
The host path is a sequence of the names of all hosts from ¢ke/ireg operator to the host
where the command has been received, followed by the nickmditihe issuer. Therefore all
information (action, issuer, target user) about evktlyy is sentto all IRC operators present
in the network.

A notable detail in the implementation is the presence ofdicdged function for sending
those messages to all operat@sndto_ops() , indicating that it is used in many places
throughout the code. Table 7.2 on the following page shoWwslates where the function is
used.

Consistent with the primary duties of IRC operators, all thé last two messages give
notice about server connections. The last message is a aodnwiach allows users to send
an (arbitrary) message to all IRCops. Therefore, the netitte the /Kill command in this
server version is the only which informs IRCops of a useatesl action.

As example for the use of these notices, one user createg dedist” of the IRC oper-
ators who issued the mo#ills 27. This was used as an argument in a discussion about
the usefulness of thkkill command. The apparent importance of a discussion about this
command is expressed by someone else in the same discussion:

"Amazing isn'’t it that the biggest discussion for quite a lehon operlist has been of the KILL
command.?8

It appears that the existence of these notices created taeea@ss about problems which
then could be discussed, and leads to resolutions like ttegehof thekill commands as
described above in chapter 5.1.2.

29[irc2.1.1/s_msg.c:807-808]

26Functionsendto_ops() , defined in [irc2.1.1/s_msg.c:154-168].
2’'monie’s matte green (1992-12-18¢: KILL Mailing list Operlist (1993)
28Watts, Andrew (1992-12-1Rills etc etc Mailing list Operlist (1992)

137

7 Controlling the Controllers?

‘ Message sent to IRCop Associated outcome of action L ocation ‘

Connection to <host> established Automatic connection to other ircd.c:159 main()
server succeeded
Received unauthorized connectioriConnecting user or server re-s _bsd.c:223 read_msg(
from <host> jected
Lost server connection to <host> Connection to user disrupted s_bsd.c:241 read_msq(
Connection to <host> established Connection request by user ors_bsd.c:247 read_msg(
server approved
Link with <host> established Success of a IRCop-issugds_msg.c:755 m_server(
'[server’ command
Received KILL message for <nick>. IRCop issued '/kil’ command s_msg.c:807 m_kill()
Path: <user>!<host>

<nick>: <message> User issued '/woper’ command | s_msg.c:1378
m_woper()

Table 7.2: Notices sent to IRCops in irc server version rc?.

Notices allow the recipients to get a better overview abdtis happening in the network,
and can help fostering the ‘community’ between the pargiotp of an IRC network.

Quantitatively, one can observe a continuous growth ofcestisent to IRC operators.
Whereas in the whole irc2.1.1 code (October 1989) only temelto _ops() are used,
irc2.4 (May 1990) already uses it in 14 places throughoutthge, and it grows steadily in
the EFnet to 65 in hybrid-6.0 (January 2001). This indicaresctive use of the notices, and
necessity or demand for more fine grained notices about tire

Changes in notice mechanism
Next to the growth in notices, some changes in the mecharasensotable. For a long time,
all notices could only be received by the IRC operators; ramsers did not have access
to them. But with the beginning of the irc2.7 code series,dbers made it possible that a
number of notices could also be received by users who wishdd so.

The functionality was implemented by expanding a mechac&lleduser modesSimilar
to channel modé§ it allows the user to configure characteristics conceriiegrepresen-
tation in the IRC. For example, an "invisible” mode takes tiser out of the list of users
returned by théwho command. Also, IRC operator status is implemented as annuseée.
User modes are displayed or changed with/thede command®.

The irc2.7 series (January 1992) introduceddbever noticauser mode, the ability to re-
ceive server notices. When set, the user was receiving @itasothat IRC operators also
received. If for example an IRCop issued a Kill, all thesesiseere receiving a notice like

29See above chapter 4.3.1.
30For a description of these modes and command, see for ex&igale (1993) (section 2.4, "Channel and User
Modes”).

138

7.3 Notices and Logs

+* Notice -- Received KILL message for userl23. Path: svr3!svr 2lsvrllsomeOper

informing them on dkill issued by the IRC operateomeOper for the usemuserl23 .
So beginning with this server version, users had accesstedme notices that before were
reserved to the IRC operators.

The feature was implemented through a change irsémelto_ops() function. Where
before all users tagged 'operator’ was sent the messageathosers tagged 'receives server
notices’ were sent it instead, and no distinction betweemnsuand IRCops were made any-
more.

The server notice mode allowed user only to either receiv@daices, or none at all.
An functional expansion of the reception of notices by useas made in server version
irc2.8.21+CSr20 (Jan. 1996). Now every notice is subsunmethé coders under one of
six categories. Users and IRC operators can subscribe tatbgories, and then receive the
respective notices.

Two of them can only be received by IRC operators:

¢ (no name) Notices which are sent to all IRC operators. These inclaided IRCop
authorizations, IRCop addition to K-lines (commaklihe 3), and reaching maximal
numbers of connected clients and servers.

e C-mode Only for IRCops, but they can opt to not receive them. Whessstibed, IRC
operators are notified of every successful client connectio

The remaining four modes can be subscribed by any user:
e K-mode A notice for every issuefkill command.

e F-mode A notice for every nickname collision (a nick change or niegistration col-
lides with an already used ni¢3}.

e R-mode A notice for every client connection rejection by a senRejection can occur
on various conditions, for example a prohibition to use pmgonnect more than once
to a servet®, or limitations on the username fornfat

e U-mode A notice that the maximal number of allowed client connactio a server has
been exceeded.

In this way, users and IRC operators can each decide on tliledad amount of server-
generated notices that they receive, instead of receivihgraall notices or none at all.

31See above chapter 5.3

32See above chapter 6.1.1.

33These multiple connections are calleldnes see below section 7.4.2.2.
34Using special characters, or mixed case characters.

139

7 Controlling the Controllers?

7.3.2 Logging

Logging, i.e. saving IRC messages to a file for later reviem, @ccur at various places in the
IRC. Generally every user can log her conversations thrtxeghRC client prograrft. In this
way, log files are used to save conversations for retrievalgh sites etc. As example, the
Undernet opschodfl saves logs of its channel operator courses which then caovingloiaded
on its websité’.

More important than user log files are those which the setselfigenerates upon issued
commands, or system status events etc. Due to its naturees-seitten files (similar to
the configuration file), access to them is limited to the IR@awstrators. They therefore
are a control tool of IRC administrator which allows her tplegy events, for example what
happened in her absence. Server log files are a valuablestoohtrol the actions of the IRC
operators.

As example of server logs, logging of IRCop actions are ohiced in server version
irc2.8.5 (April 1993), where every IRC operator authotizatcould be logged to a file, and,
using the Unix-provided "system log” facili#j, /kill , /squit , /connect (server con-
nect) and (again) operator authorizaffonAs other additions, irc2.8.21+CSr20 (Jan. 1996)
specifically logged failed IRC operator authorizati¥hsand hybrid-4.3 (Aug. 1997) the
/kline command®.

Similar to the notices above, although on a smaller scalendency to collect more in-
formation about events can be observed. Successivelyotters have added new logging
facilities to keep the IRC administrator updated about vih@tiRC operators have done. And
since the logs are only accessible by the IRC admin, they easebn as the most accurate
record of events.

7.4 The Undernet UWorld Service

This last section of the chapter presents a comprehensstersyof power and control, im-
plemented in the Undernet network, known as th&orld service As the name indicates,
it is a service bot similar to the channel service bots reewdabové’. In contrast to these

35The show case in section 7.1 above is based on the log file @iimglaining user, large parts of which was
attached to the mail that he sent to the mailing list.

36See above chapter 6.3.2.

3"http://cservice.undernet.org/main/opschool/

38The "syslog” facility available on Unix operating systenibas processes to write log messages to central
log files.

39irc2.8.5/include/config.h:201-328]

40[irc2.8.21+CSr20] (Jan 1996)

41See above chapter 5.3.

42Chapter 6.3. This similarity goes even further since onenefdervices reviewed there is the X/W channel
service bot which has strong connections to the Uworld bot.

140

7.4 The Undernet UWorld Service

though, the UWorld offers its commands and functions asmsipa for IRC operators’ chan-
nel support duties. As we have seen above, this user sugpgeherally considered the least
important duty of IRC operators, so there are only few togéslable to them. By instituting
UWorld, the Undernet departed from this philosophy, indtpeoviding a number of com-
mands and automatic functions to UWorld-authorized useos fecessarily IRC operators
themselves) to cope with channel-related (and other) $ssue

This case study first gives an overview of the UWorld senitsdyasic setting (section 7.4.1),
followed by the main functionalities (section 7.4.2). Theoth the user access system (sec-
tion 7.4.3) as well as notices, logging and information nseas control (section 7.4.4) are
examined.

7.4.1 About the UWorld Service

UWorld is a service bot, similar in working to the bots andvisas examined abof& From
one central place in the network, it provides commands aherdtinctionality not available
by the servers: the ability of IRC operators to interfereharmnel affairs, issue netwide bans,
and actively fight specific user behavior (flooding, clone®rded an offense by the Undernet.

According to a historical account of the Undernet, UWorlghegrs to have been present
from the start off. This may be not coincidental, because the creator of UWd@khiel
Mitchell ("WildThang”) was one of the founders of the Undetn It seems though that the
functionality had not been widely known for some time:

"There’s a long debate over the existence and use of Und&twdnderworld was the server
name, UWorld was the bot name). It had been linked since thearo* server was first linked
back in December 1992, but many opers and admins didn’t knloat W was for. It was agreed
that it provided necessary and helpful serviées”

Besides its functionality, a main "characteristic” of thex\ace was the non-availability of the
source code. Mitchell did not release the UWorld code inedpen source, but instead sold
binary versions of UWorld through his company, Chatsystéms This may be one of the
reasons why there only sporadic mentions can be found ofttvece, and no documentation
or detailed functional descriptions.

The mentions are as short as the following:

"[On what an IRCop is] IRCops also have the ability to use Undés services like UWorld,
EUWorld, and UWorld2 in attempts to keep Undernet togetsexr aetwork.

43See chapters 6.2 (bots) and 6.3 (services).

4See quote below, according to which Uworld linked to the Unaeld in December 1992. Undernet formed
itself at the same time.

“Mirashi and Brown (2003): "[Uworld] had been linked sincesthorman* server was first linked back in
December 1992” (Undernet formed itself in late Decembe2) 99

141

7 Controlling the Controllers?

"[Secondary duties] may include [...] using UWorld, UWa2|dor EUWorld to resolve channel
problems *6

The UWorld code went through three revisions, but techrpcablems as well as deliberate
attacks on the service led the Undernet principals to thibduga alternatives. One such al-
ternative was EUWorld, a independently programmed, buttfanally equivalent to UWorld
which provided the services mainly on the European sidesblindernet. Later, another alter-
native emerged in form of an open sourced generic servidedmework named GNUWorfd
which offered to replace both UWorld (as well as the X/W chamegistration service). In
May 2001, the UWorld replacement GNUWorld "CControl” waswdg, which Mitchell op-
posed to at first. But as problems with the UWorld furthere@o@trol was connected to
Underworld first in December 2001 to replace EUWorld, andlfria May 2002 also on the
US side, replacing UWorld which delinked in April 2002.

Although the source code of UWorld was not released to then sperce, Mitchell did
release the source code of an older version, because "numpeomple have shown lots of
interest in obtaining it*. As for the code itself, he explicitly points to the poor dtyabf the
code, and the lack of documentation:

"This code was hacked/thrown together over about 7 yeasssfrig ideas around, learning more
about C, and is quite honestly NOT something | would dare tosicer professional quality
code.[...]l apologize for the lack of documentation orinstions.”®

Despite these claims, | have based the following explanatmn this source code, partly be-
cause no other version was available, and partly becauselogped as a closed source soft-
ware, it includes some interesting «code» structures wimigfint not be available in openly
developed softwaPé.

7.4.2 Functionality
The main functionality of the UWorld can be roughly sepadatdo two categories:

CoMmMANDS: UWorld offers a number of commands, such as banning usershanging
channel settings or membership.

46Undernet-User-Committee (2001)

4http://www.gnuworld.org/

48Uworld 2.0+wild source code, file [uworld/README]

“ipid.

501t could be interesting to compare the UWorld code with itscassor, the GNUworld CControl module. Next
to «code» governance differences, such a comparison nugkkfmple support the results given by Kesan
and Shah (2002, 2003a) who argue that different institgtidimey studied university, firms, consortia, open
source movement) incorporate different value sets intectige.

142

7.4 The Undernet UWorld Service

AUTOMATIC FUNCTIONS. UWorld traces all activities in the entire Undernet, and oati-
ate actions according to its settings. This includes dengintry to banned users and
detecting clones (multiple user connections from one reoxd)floods (rapid succession
of data being sent over the network).

7.4.2.1 UWorld commands

The commands available through the UWorld are notable ashireak with many philoso-

phies and policies upheld in other IRC networks through #mwes code: Direct channel
interference by IRC operators and network-wide bans wetie fat available, although there
was no technical reason which would have hindered theiremphtation (as the UWorld it-
self shows). The first two subsections below trace the impteation of these functionalities
in the UWorld.

But the two other functionalities presented here are asbi®ts the first ones: The abil-
ity to "masskill” may be comparable to the simplll command, but "nuking” users,
flooding users with messages for the purpose of disconmetitiem, definitely is not. An-
other command, "mycmd” allows to submit arbitrary commamidsumventing any UWorld-
implemented control structures (validity checks, noticé g facilities), and therefore can be
seen as the most powerful command in the UWorld, for whichamed imagine many uses
with strong governance implications, as it hands the uridapower of the UWorld into the
hand of the issuer. The existence of the latter two commanglstine attributed to the lack of
an open source peer review.

Channel related commands
Most IRC networks follow the principle of no-interferenaechannel affairs, as long as the
network stability is not affected. But apparently this has stopped IRC officials to interfere
in an indirect way, as shown above

UWorld implements a number of commands which allowdiectly manipulate channels
in various ways: There are commands which override any alamodes set by channel
operators (commandpcom mode); the commandslearop andclearbans delete the
list of channel operators and the channel ban list, respygtiAs for the users of a channel,
opcom kick allows to exit any user from a channeleop takes channel operator status
away from the user, angop gives channel operator status to a user. In this way, anycaspe
of the channels (channel mode, operators, membership)ecaarrolled from the Uworld.

From the technical perspective, the UWorld actions do netlreny special provisions on
the IRC server side. The UWorld commands are converted jppoopriate server messages
and sent into the network. Since the UWorld is identified leydthers as an IRC server itself,

51The show case in chapter 7.1.

143

7 Controlling the Controllers?

all such commands are readily accepted without furtheraaigdition checks. The only user
authorization which takes place is that of the UWorld it§elf

Besides the power that UWorld gives its users over chanfalrsfthe other rationale to
implement these commands are its use by the X/W channels&€tviRather than enforce
its policies itself, the X/W service connects to UWorld arsgsiits commands. This relieves
X/W from having to duplicate the commands and services d{redfered by the UWorld, as
well as the control structures (access control system).

G-lines: Undernet-wide user bans

In chapter 5 | have shown how long term sanctions — K-linesve llieeen user entry denials
for one server, initially to be issued only by IRC admins,yolalter one to be given limited
access to for IRC operator&kiine command, chapter 5.3). The UWodtine command
breaks with both principles: It allowsWorld usergwhich do not necessarily have to be IRC
operators) to issugndernet-widebans (called G-lin€$). These G-line bans can be managed
only through the UWorld: although G-lines are active in tRE€Iservers next with K-lines,
they can only be set or changed through the UWorld; there @ineat access of IRC admins
or IRC operators to the G-lines in their own server.

G-lines are time-limited: UWorld code sets a limit of ten ddgr a ban. Interesting here is
the immediate sanctioning function built into the commahdn UWorld user issuesgline
command with a duration longer than ten days, then the UWoridediatelysanctions this
user by g-lining her for twenty days. UWorld users with a veigh access level (see below)
though are exempted from the ten day limit, they may issum&lwith arbitrary duration.

As another important detail, G-lines are associated withdenfiguration files in the UWorld:
the G-line file and theG-line exceptiorfile. Every time agline command is issued, it is
also saved to the G-line file. In case of a restart of the UWdHi$ file is read in, thereby
preserving the G-lines in case of disruptions. Also, UWardiiins® can change G-lines by
directly editing this file. And similar to the exceptions twetK-lines in the IRC serveéf,
UWorld allows its admins to supply an G-line exception filene of the users or user groups
in this file can be G-lined by UWorld users.

Note the subtle differences in control over these functlitas, through the interface offered
to these two files:

e G-lines can be issued by UWorld users and are automatiadtigdto the G-line file.

52See below section 7.4.3.

53See above chapter 6.3.2.

54This is confusing since "G-lines” are not configuration krie an IRC server config file. The name is instead
derived from the functional similarity to K-lines.

55Not Uworld users This is similar to the difference between IRC admins and tp€rators: Only the Uworld
admins have access to the file system of the host where Uwort] and can therefore change the G-line file
(as well as all other such configuration files).

6E-lines; see above chapter 5.3.2

144

7.4 The Undernet UWorld Service

But that file can only beditedby the UWorld admins; deletion of G-lines occurs auto-
matically after the set duration.

e Exceptions may only be made by UWorld admins by editing thien&-exception file;
no command interface exists which would allow UWorld usershange its content.

Technically, the IRC server code has been changed in ord@ctmmmodate the G-lines. But,
as mentioned above, neither IRC admins nor IRC operatoesdiagct access to them on their
server, but need to access them through UWorld, an integesiiception from the principle
of absolute control that the IRC admin has over her own server

Kills, masskills, and nukes
The first two of these commands are rather a 'conveniencetium for IRC operators, but
give UWorld users who are not IRC operators the same furalitgn Thekill command is
the same as &kill , whereasnasskill — allows to provide more than one user or one user
group at once, living up to its rather disgusting name.

More noteworthy than these commands is thennuk command: It allows to nuké a
user, to send hundreds of messages in rapid successionheithtention to disconnect her
from the server. Nuking users is considered a severe offartke IRC:

"[Are nuking allowed in Irc?]

"Nuking are definitly not allowed in IRC.If anyone caught rgx people he/she will have a
straight ban from the sever by an IRcop.Ban means a forevefrben that sever,meaning you
can never enter that sever again. So please think twicedgfarwant to do this®

Even among those who might consider attacks in the IRC asanatllegitimate, nukes have
a low standing:

"Nuking is not clever and certainly not '3lit3'(elite) urds you wrote the software yourself, or at
least designed it for someone else to write and compile. Aikéhg is never as big or as admirable
as being able to win a battle intelligence and wit. Nukersgamerally the tools of lamerz who
have no other means to get notice and respéct.”

One can only imagine that this command has been implemeatsdinulate nuking attacks
in order to design safeguards against it. As indication of ithtent stands the fact that this
command is only available to UWorld users of the highest@aughtion level (see below).

5"This term is sometimes interchangeably used with floodingking though is generally used for user floods,
whereas flooding also occur in channels, or against semsisthe intention of nuking is generally described
as disconnecting users.

S8http://www.geocities.com/adazmy/Whatirc.htm (2002019

Sohttp://www.geocities.com/adazmy/Strategies.htm(7 20§2)

145

7 Controlling the Controllers?

Mycmd — A command to execute arbitrary commands

Commands like thenycmdcommand can be often seen in software which is in the prodess o
development, as developer back door to the systeptmdallows to send arbitrary messages
to the UWorld.

With normal UWorld commands, the service receives the conths&ring and the parame-
ters, constructs a well-form&tmessage string, and sends this string to the approprigtetsar
(servers, users). In addition, it executes various cheslghfrization etc.) as well as con-
trol mechanisms (notices to others; logging etc.). In @stithemycmdcommand sends the
given parameter stringerbatimout to the servers; neither message string construction nor
checks etc. are executed.

For example, an UWorld user would issue the command in thme:for

gline 600 anuser@anhost.com Test

UWorld transforms it into the message string

GLINE * +anuser@anhost.com 600 :Banned

(+anuser@anhost.com) until 1104534600 (Test) 61

and send this string to all Undernet servers, resulting inlan&in all servers for that user.
Also, the gline function would check a number of conditioosate log entries, and send
notices to operators.

With the mycmd command, the issuer gives the second message string asgbaraamd
the effect is the same as in the first command strirgjiree is issued. The difference is that
all condition checks, log entries, notices part of the comdnarocessing inside the UWorld
are circumvented in the second case, since no command piogéskes place.

Therefore, themycmdcommand is the most powerful command in the UWorld: it allows
to issue arbitrary commands which are then send with thevatittof the UWorld service bot
to the servers and users, but without any built-in checki¢c@® or logs. The only condition
built-in to mycmdis that only UWorld users with the highest authorizatioreleare allowed
to issue this command, which is quite understandable. , &githermycmd nor numnuk
commands would be imaginable in an open sourced program.

7.4.2.2 UWorld automatic functions

In addition to commands issued directly by the users, UWodthdes a number of functions
which are automatically executed based on some set consliths service bot, UWorld has
access to the same global state information available tiR@ll server in the network, and

60.e., conforming to the appropriate communication protoco
51The whole string actually consists of only one text line, &iad been separated into two to fit into the text
layout.

146

7.4 The Undernet UWorld Service

receives all network messages. UWorld can therefore breugted to act in several ways on
such messages. Examples implemented in UWorld are givewb&lealing with clones and
flood protection.

Dealing with Clones
When more than one client from one host connect simultamgtasin IRC network, these
clients are calledlones Clones are considered offensive in IRC networks:

") Clones can be loaded to all attack one target with a floodaté, usually in the form of excess
DCC requests or ICMP data packets. Many Floods are onlyteféiewhen used by 3-4 at once.
"I1) Clones can use your nickname when you are offline to carméble and start a war in order
to 'tarnish’ your name.

"I11) Clones can be 'cloaked’ behind your nickname so thatgveryone else, whatever they do
seems as if you had done "

UWorld provides a clone checking facility by tracking thenmber of clients for each site
connected to the network. It can be directed to react in séways:

e User warning UWorld sends back a message to the user who exceeded tivea@ilo
clients-per-host count a text which looks like this:

"WARNING: Multiple connections from a single user host aomsidered clones. If this continues,
you risk being banned from the entire Undernet. (Think alitouts it worth it?) Undernet will
not tolerate flooding or clones. Your host has been addeckttogfiles®®

e Group notice A notice is sent out to a special oper-only channel that siptesclone
has been detected.

e Auto-sanctionThe connecting client is automatically glined: the cliendisconnected
from the network, and a netwide entry denial for 10 minuteaesl.

Also, UWorld manages a number of lists which further influetite conditions and actions in
case of clones:

e A list of hosts is kept from which no clones are allowed at dlhis list can only be
changed by editing a UWorld configuration file. The UWorld coand interface only
allows to examine the lisshowshost) and to reload the fildgadshost).

e Another list contains all hosts from which clones are alwai@®ved. Again, this list can
only be changed by editing a configuration file, and the conthiraterface is limited to
examination $howmhost) and reloadinglopadmhost) of the list.

52nttp://www.geocities.com/adazmy/Strategies.htm(208207)
83Uworld 2.0+wild, file [uworld/nicklist.c], line 1246

147

7 Controlling the Controllers?

e A third list contains all hosts which are automatically gléh independent of the current
clone-related setting. As with the lists above, this is guntation-file only changeable
(commandshowagl andloadagl |, resp.)

Further functions are implemented into UWorld, suggedtwagthis feature has received much
attention in design and implementation, and must have beeguite some importance for the
Undernet officials.

Flood protection

This feature is a self-protection mechanism for UWorld. rivtpcts the service bot against
being made non-responsive because it is flooded with (bagrs)ce requests. Basically it
consists of recording the number of requests made in a giwen ftame, and if this num-
ber exceeds ten requests, the originating client is diseced from the Underneki{l).
This feature can be activated or deactivated from the UWarldmand interface (command
floodprotection). With another commandi¢odlog), UWorld can be directed to
write every request that it receives into a special log filaisTallows the UWorld admins to
inspect the flow of requests, and initiate appropriate astagainst flooders.

7.4.3 UWorld User Access

Given the various functionalities offered by UWorld, it cesnat no surprise that the coders
have implemented an access control system to UWorld. The features of this system
is a level-based access to the commands, similar to thateo€hannel servicé$ and its
independence from the normal IRC operator authorization.

The access to commands of the UWorld is determined by a lal#t\assigned to each user.
Normal Undernet users have an access level of zero (0) wheanathat access to UWorld
is altogether denied. Negative access levels even caretriggher actions, such as being
automatically banned from the Undernet. Positive values gccess to UWorld commands,
with higher levels authorizing more commands. In additismme commands require IRC
operator status in the Undernet on lower levels.

The levels are written into a special UWorld user list. It@ons all users who have a status
in UWorld different from the normal Undernet users status. (ilevel zero). On startup (and
upon thereload orloadusr commands) the listis read in from a users configuration file;
UWorld admins therefore can give users access to UWorld Bingdhem with an appropriate
level to this file. While UWorld is running, a command interdaallows changes to this list:
the commancddusr adds a user to the list, with the given access level. Singjlegmusr
removes a user entry.

64See above chapters 6.3.1 and 6.3.2.

148

7.4 The Undernet UWorld Service

A special case is the IRC operator status, which is treatetlapendent of the level system.
Normally only set when a user is IRC operator, a hon-operaser can be assigned IRC
operator status for the UWorld by issuing theakeop command. This status is valid only
inside the UWorld; but the powers given can be similar to tifed normal IRC operator, so
that this status can be considered an 'UWorld IRCop’ one.

In order to gain access to the UWorld commands, a user am#dsohnierself with therfy
command. If this user matches an entry in the UWorld usentist has provided the correct
password, she is now recognized as authorized user and therfissue UWorld commands
according to the access level given.

UWorld distinguishes roughly six access levels, denotadhie 7.3. As usual, with higher
level comes access to more and more powerful commands. TDive afentioned all-purpose
mycmdcommand for example requires the highest level 10.

COMMANDS

1 help, reop, vrfy

I+ 0per version, wibble, leave, join, users, stars, bans, testhan, loadglines, showbans, clones, chanlevel, clearchan,
clearops, clearbans, clearmodes, gline, mgline, rgline, remallgline, remgline, autoban, mauroban, remauto-

han, kilrel

6 DCC dmsg/dwheumode/deowalbwalidlist, info, servs, protect, unprotect, scanz, nofloods, operin, operrem,
showoperchan, eperadd, showkillchan, remkillchan, killchan, scan, lnsers, listcomm, lastlog, opcom

8 spew, acranal, ipscan, uidgline, tsc, floodlog, secureoper, clearkick, snoop, kickass, dogline, stricrscan,
reconnect, jupe, makehelp

9 nohelp, makeop, opersuspend, chansuspend, nokill, autokick, autocore, fioodprotection, logjoin, loghost,

addusr, remusz, showagl, showmhaost, showshost, showsuspend, showcsuspend, lnadchansuspend, loadkill-
chan, lnadsuspend, loadshost, lnadmhost, loadagl, loadnogln, showfloods, leadusr, dokill, reboor, masskill,
check, reconnect

10 nicksery, dkill, reload, killlog, noopers, maxses, maxsite, autogline, warnclone, maxclients, mycmd, make-
mybors, killmybors, checkmask, showhost, nickdump, filenick, numnuk, numnukz, numnuks, kill, deop,
dome, exit

Table 7.3: Uworld commands and access level

Another interesting feature is the ability to deny IRC opers access to UWorld. The
commandopersuspend suspends an IRC operator’'s access for a given durationgif th
IRCop has access level 7 or lower. Any user with level 8 andarmot be denied access to
the UWorld.

7.4.4 Control in UWorld: Information, Notices, and Logs

As the description so far has shown, the UWorld service edpéme power that an Undernet
official can have inside the network, allowing its users taraiie channel settings, issues bans,
etc. To control the use of its power, the coders of the UWoddehimplemented control
mechanisms, similar to those already examined in the IR@s&rIn addition tanoticesand

149

7 Controlling the Controllers?

loggingmechanisms, accessitdormationis equally important, as the UWorld is a centralized
service, and therefore information not as readily avadasl in the distributed server network.

Information

UWorld offers a little over 20 (out of 122) commands which ased to get various informa-
tion, from a help text and UWorld version string to the comgesf the many access lists. The
amount of information depends on the access level of the user

On level 1, the default level for IRC operators, there arg arfew informational commands
available. The three important commands asers , which shows the list of UWorld users
including their access leveshowbans , which lists all active glines, andones , which
lists all hosts that UWorld considers to have clones (midtgimultaneous client connections
from one host).

For further access to information, users need level 6 ordrighevel 6 for example allows
to see the list of all oper-only channels managed by the U¥Vahd also the list of the
last 15 commands that were issued through the UWorld. Leg@é&s access to almost all
lists managed by UWorld: The list of auto-glined hosts, theth from which no clones are
allowed, and the hosts from which clones are allowed; th@fisuspended IRC operators and
suspended channels; and the list of potential flood host&llfi uses with the highest level
10 are allowed to see the list of every host that UWorld knofs o

Taken together, IRC operators are given the basic infoondtiser list, active glines, possi-
ble clones), whereas for further status information of theéddd, at least level 6 is necessary,
which has to be explicitly assigned by an UWorld user of I&ef 10.

Notices

The main source of information about actions of UWorld arg s& notices, special messages
to a specific user group or a special channel. UWorld emphlgsmain ways to send out
notices: wallops and #UWorld.flood$Vallops short for 'write to all ops’, sends a notice to
every IRC operator logged into the network. This allows tREbps to stay informed of the
UWorld actions.

The other way is the UWorld-managed channel na#dd/orld.floods This is a oper-only
channel, that means only IRC operators (and those UWorld @ssigned quasi-oper status)
may enter this channel. As with the wallops, UWorld sends<aliee if it executes certain
actions.

In addition to these two main ways, there are a few commandsevhsers connected
through a DCC connection to UWorld receive a notice. Thefwihg table lists all commands
which trigger a notice, together with the level needed taesghe command, and the kind of
notice sent by UWorld (table 7.4).

Wallops are the default method to send out notices. The @tamethod as well as the DCC

150

7.4 The Undernet UWorld Service

clearchan 1oper X X
gline 1+oper X X
rgline 1+oper X
remgline, remallgline 1soper X
autoban, mautoban 1+oper X
remautoban 1oper X
killchan 6 X
:P]:c::mk:::c G+oper or 7 X X
sccurcoper, kickass, 3 ¥
dogline (roggles)
jupe 8 X
operadd 9 X
opersuspend 9 X
chansuspend 9 X
reboot 9 x
masskill 9

exit 10 X

Table 7.4: Uworld commands triggering notices

notices are used only for a few commands. Also, easily datéetrom the table are the most
powerful commands on the lower levetdearchan |, gline , and bothopcom commands
trigger both wallops and #uworld.floods channel noticef®rming both recipient groups.

Not so obvious is the distribution of notices in relationhe &ccess level of the command:
While the important commands on level 1 + oper are at leadoped (6 out of 25), in the
higher levels fewer ones send out notices (on level 8: 4 olilbpbn level 9: 5 out of 32). On
the highest level 10, only thexit (stopping the UWorld process) sends out a DCC notice;
none of the commands are walloped or sent to the special ehann

Logging
In addition to notices, UWorld maintains a number of log filesme of them all the time, some
conditional to activation via UWorld commands. None of thkx files are accessible through
the command interface, therefore only accessible by theddVdomins. In the available code
version though, most of the log facilities are not fully irapiented, but only stubs with no
actual function. Six logging facilities are fully implemieal, three of them are always turned
on, one can be disabled at compile time (a debug log), and &wde explicitly turned on or
off via the command interface.

Of the three logs always turned on, the first one is a globajitagfacility recording ever?
UWorld command received, including the issuer, all paramseand a timestamp. This allows

85Almost: the commanddccwall , wall , dmsg, dlis t, dwho, andumode are ignored.

151

7 Controlling the Controllers?

to replay the whole usage of the UWorld service.

The other two logs are similar, but limited to specific coma&nOne creates log files for
each occurrence of thfine command. It is obvious that this must have been of importance
for the coders and UWorld admins: One file contains all daeachgline command issued
in one day, with the date as part of the flename. This allowsattimins to check all glines
iIssued on one day. The other log records every KILL messageoser the Undernet, which
includes those issued by IRC operators with tkié command. So both logs together
allow a good overview of both short-term and long-term blamients in the Undernet.

These logfiles are only accessible to the UWorld admins; wbttee other officials, includ-
ing IRC admins or IRC operators, have access to these files.

Next to the debug log, which is similar to the general log filkere are two which again
log only specific situations, corresponding to the abovetmead functions: Flooding, and
Clones. The flood log is similar to the general log file: it netevery message received
by UWorld. But in difference to the former, the flood log musttorned on explicitly via a
specific UWorld commandipodlog , level 8 command); in addition, the log is written to
a distinct file. | assume that the log was turned on when a flgathat UWorld was detected,
and turned off afterwards.

A similar mechanism has been implemented for clones. Thygdoords every time that
a new user connection is considered a clone (multiple cdrmmefrom one host). This log
recording is bound to further conditions: It must be conpileto UWorld (via define di-
rective, per default turned on), the log functionality mbstturned ontéc command), and
UWorld must consider the new connection a clone (which camubed in various ways).
In any case, this allows the UWorld admins to review whichramtion attempts UWorld has
judged to be a clone; such information can be used to finethexeone detection mechanism.

In sum, UWorld employs a number of logs to trace its generataion (general log) as well
as specific commands or situations (glines and kills; floodiscdones). Logs can either run all
the time (general log, glines, kills) or turned on or off thgh the command interface (floods,
clones). In the case of UWorld though, none of them is acbksghrough the command
interface, but can only be accessed by the UWorld admins.

Summary — Checks and Balances for IRC Operators

IRC operators are the most important officials in the IRC, wwttbey manage the day-to-day
operations, help to maintain the server and the network tarstipport the users. For this,
they have access to some privileged commands. The sodias sfdRC operators in the IRC
appears to be contentious, apparently due to the non-aegrspivay that they are nominated,
and the discrepancy of how they should act, and how they lhctia

152

7.4 The Undernet UWorld Service

Previous chapters have explored the ways how an IRC admaittistan check the power
given to IRC operators. Here a 'softer’ variant of controé eeen introduced: server notices,
sent to other IRC operators and later also received by usade ithe actions issued by IRC
operators more transparent in the network. Also, log fildp tiee IRC admin trace back the
actions by her own IRC operators, detect possible misusakaw evaluation of complaints
from users. The continuous growth in implemented noticeslags in the server versions
indicate that the need for transparency in network evenssgeawing, especially when con-
sidering the growth in usership, with which came the growtlservers, admins, and IRC
operators.

The UWorld service bot of the Undernet, presented in thedastion, combines many of
the points made in this and the previous chapters into orggesghow case: A large step in
differentiating the mechanisms available to maintain asd@cder, with both «code» remedial
rules applied by officials as well as substantive «code»srudefine-grained access system,
matched by both notices and logging facilities built-in tesere some control of the UWorld
users; and last not least, implemented as a centralizettsdxot, not in a distributed manner
through server code changes.

From the «code» governance perspective, some issues aeapp

TRANSPARENCY (1): The main rule examples of first chapters—notices and-legre ex-
ample for«code» procedural rulesas they give the 'controllers’ of the IRC operators
means to obtain information about their behavior. Thesd kihinformation are im-
portant in «code» based social settings, as there are afesi®ew means to understand
what is happening in the system, who initiated some actietas,The description of the
status of IRC operators has give some impressions on théepndb control their behav-
ior, and the apparent lack of success with normative guidsletc. The «code»-based
mechanisms which enhance the transparency can be a vatett@nism in promoting
a common understanding of norms, and may lead those in ptR@rgdmins) to apply
sanctions in case of abuse.

CENTRALITY IN DISTRIBUTED SYSTEM: The simple fact that one central service bot can of-
fer such a breadth of features just by acting different froendther servers shows the
potential of such centralized services. Even more than lla@mel services reviewed
above, the UWorld offers its users unprecedented poweh, &siallowing them to inter-
fere into channel affairs, or offering network-global bamsth of which are not available
even to IRC operators as highest ranking official in the IRG@voek. Also, UWorld has
its own user access system independent of the IRC servetbe ersion examined,
only the service admin could give users access, again tiemtgathis power in the
hand of those who run the service.

153

7 Controlling the Controllers?

TRANSPARENCY (2): As for the transparency of the UWorld, a mixed picturesthe drawn.

On one hand, the notices and logs implemented follow theltdepicted for the normal
servers: most actions, especially the powerful ones onaverl levels, are accompa-
nied by notices and logs. But overall, due to lack of docuragon and access to the
source code, the power of those with high level access appeaave remained largely
unknown. This might have been part of the reason to replazé&/World service with
another one, this time developed in an open sourced project.

RULE TYPES Next to transparency as serving procedural means, the ldWgstem repli-

154

cates on the network level what was already pointed out Wethriégistration services on
the channel level: implementation of substantive ruleal{dg with clones), and reme-
dial rules (commands), giving Uworld users much finer grdipewer for example over
channels than were available to IRCops. The Uworld accesdsrsyas well is similar to
those in channel services. A major difference though in theroller-selecting stems
from the closed source development, combined with the aktytof service bots: The
power accumulated here for the highest access levels iecegented, especially when
considering the the lower level powers already encompaghiag available in other
networks. «Codex»-based constitutive or even only pro@dules fail because there is
no control instance of the controllers.

8 IRC Network Issues

In this chapter, two issues on the IRC network level are ared. The first section 8.1 claims
that minor changes in topology and data distribution of &ithsted system can have a large
impact on the governance structure of the application. Bymaring the IRC to the Domain
Name System, | suggest that at least part of the power sewgghe latter derive from the
chosen architecture, as does the apparent balance betR€edministrators.

The second section 8.2 and last one of the empirical pari®ftbrk gives a short account
of the first documented disruption of a network, a major disament on a IRC-constitutional
value which led to a split up into two networks. In this wayttbaetworks were given the
opportunity to evaluate the viability of their policy cheic

8.1 «Code» Architecture Shapes the Social
Constitution

In this section, | will explain how the choice of the basic eaafchitecture of the Internet
Relay Chat defines a specific part of the the IRC constitutios relationship between the
IRC servers and thus between the IRC administrators.

Comparing the IRC architecture to that of the Domain Namee®ygDNS) | suggest that
detail differences between these two — both chosen out gilsitechnical considerations —
have large consequences for the relationship between therseand its administrators: In
the IRC, the architecture leads to a much more balanced pdigteibution than in the DNS,
where the so-called "root” server(s) and those who manage thold the most powerful
position of all servers. In this way, the «code» architeetsitapes the social constitution of
the application in question.

8.1.1 IRC: Topology, Data Distribution and Technical Ratio nale

The technical rationale of the IRC architecture was detegohiby one main consideration:
Created at a time (1988) where many links between the Inteveee measured iRilobits

per seconds, a real-time communication application hadpe avith a limited bandwidth
situation. Thus the prime concern was to minimize the badtiwneeded by the IRC. As

155

8 IRC Network Issues

another factor, the creator Jarkko Oikarinen planned asysthich should serve about 100
users over these limited data connections (one has to comparéottiie around fifty to sixty
thousand users in the large IRC networks nowadays!).

Based on these considerations, Oikarinen chose the topoliog spanning tree and a
data distribution scheme where each server holds the the emtwork status, constantly
synchronized between the servers.

Topology: Spanning tree

The main characteristic of a spanning frézits lack of cycles between servers: there is no
way between the nodes of such a tree which leads from one haolegh others back to that
node. As consequence, there is always exactly one way betieearbitrary nodes in the
tree (see figure 8.1).

Figure 8.1: Spanning tree topology

This minimizes the computing cost for the servers (nodet)emetwork: There is no need
to determine for example a fastest or best route once theonkeis/ set up. Also such a tree
topology allows for comparatively easy dynamic configunati.e. if one host ceases to work,
then the remaining hosts can relatively easy form into a meeu t

Data distribution: Global state duplication and synchroni zation

The second choice by Oikarinen concerns the informationitaih@ network topology avail-
able to a server. Again in order to minimize the data traffid Hwus the bandwidth require-
ments, Oikarinen chose a technique where each IRC host imbtdsnation about the whole
network so that it can decide for each data packet to whicerdthrectly connected) hosts to
forward it to®. Thus only the data packets necessary are sent over the IfRGrke

lUndernet-User-Committee (1996)

2See for example Perlman (2000, p.531).

3This resembles the broadcast algorithm that Tanenbaun®(p9808) describes in connection with the span-
ning tree. He claims that this algorithm "makes excellertafdandwidth, generating the absolute minimum
number of packets necessary to do the job". But the disadgastare the same, as well: "The only problem
is that each [node] must have knowledge of some spanninddreeto be applicable". In the case of IRC
this knowledge is the state of the whole network which hastodnstantly updated in each host.

156

8.1 «Code» Architecture Shapes the Social Constitution

If for example three users connected each to servers A, EBaffidure 8.1) are in one
channel, then it is not necessary to send the communicasitantetween them to the servers
beyond server E, that is servers F to K. In order to send thesages in such a way though,
server E in the example has to know that there are no chanmabes in servers F to K. As
soon as for example a user in server K joins the channel, sErvas to relay the channel
messages to server K. This way, every server has to have theedgie status information
about the entire network.

IRC architecture: Advantages and disadvantages

The advantages of the choice of the IRC — spanning tree ard-dpte global status infor-
mation in all servers — have been mentioned: a low computasg io0 determining the path
between servers, and minimizing bandwidth usage by sentimgnessages only to those
servers who need them.

Another not so obvious advantage is a consequence of theld#tdoution model: Since
every server holds the same data (network status), none eétiver has an advantage over the
others, and thus no single server or admin has a power adyaot@r others. If for example
a server in the middle (for example server E in the figure apdeeides to quit service, there
is no major loss of service (other than a net split, see neceigpaph). When server E quits,
server F connects to D and G, creating a functioning netwgsgira In other words, due to
the data distribution scheme, there isan-hierarchicalrelationship between the servers (and
thus admins)

The major disadvantage of this architecture is a generaitsaty for so-called "net splits”:
As soon as a link between two servers or one server (espetialse in the middle of the
network) fails, then the IRC network splits into two partsldras to be reconnected. But also,
these two parts become desynchronized: The status infemiatone half does not match
the status information in the other half, so that upon reeating the two parts, all servers
has to mutually synchronize their global network statuenmiation. With a few servers and
tens or a few hundred users, this is no problem; but with fiétyers and ten thousand users,
this becomes a major source of annoyance for the network.thier avords, the IRC does
not scale very well. It is only due to the continuous growtltamputing power and Internet
stability and bandwidth growth that the IRC could cope witls foroblem, but such net splits
are apparently very common and a constant source of disrupfithe communication.

4This is a principal statement which skates over details efdichical nature: the disruption of a leaf server
(servers with only one connection to another server) afeuich less users than that of a hub server (those
with more than one connection). Also, hub servers with a{nighdwidth connection are more valuable as
those with a low-bandwidth connection etc.

157

8 IRC Network Issues

8.1.2 DNS: Topology, Data Distribution and Technical Ratio nale

There are several reasons why | have chosen to compare thartiR@ecture to the tech-
nology behind the domain name system: The regulatory isstmsd the many aspects of
the Domain Name System (trademark issues, global manageinde name spaces) are the
prime example of the Internet governance discussion, ddfiederm "Internet governance”
has almost become synonymous with the DNS issue. But aloJRE and DNS have been
designed out of technical considerations alone, befoiergspective popularity led to gover-
nance challenges. Above all, both share the same netwoolomp

One of the main function of the domain name system is the massgt of a host name to
the IP address of that hdsiThe rationale behind the technical domain name systemaasrkn
today was the distribution of the management of this asgonialnstead of all host adminis-
trator sending name or assignment changes to a central plageegularly downloading the
updated file ("hosts.txt’) back to the host, the DNS built upeaver system where the data is
distributed in a way so that it 'localizes the changes’: éast of managing them at one place,
the institutions (universities, companies, Internet pfexs etc.) which decide on the names
also enter them directly into their "name server”. In thigmtae whole DNS system is always
up-to-date, because the changes are immediately available

The second feature was the introduction of the hierarcimaale scheme: The name con-
sists of several parts, separated by dots. Each of thesegrartnanaged by a different name
server, with the rightmost invisible "root” of all names bgimanaged by the "root” server,
the next top level domain (TLD) by the top level domain sesyetc. down to the level of the
institutions which name single hosts. Taken togethergtiséisictures determine the topology
and data distribution of the DNS.

Topology and Data Distribution

The DNS server topology is a tree structure, and thus shaeesame characteristic as the
IRC topology (no cycles in the path, exactly one way betweswuess). Now if one has seen
pictures of the DNS server topology, one might wonder whyateve figure 8.1 of the IRC
does not resemble a "tree”, with one node on top, and the ®trewing in a triangle form
down from the root (see figure 8.2).

The reason is that the graph of the IRC topology and this-tikee graph are identical in
their interconnection, but the servers just in differensipons in the pictures. For example,
server E in both examples connects to servers D, F, and GAattthe reason that the DNS
network is depicted in such an hierarchical form lies in agaddistribution model.

The data distribution derives directly from the said iniemiof the system: to allow a dis-
tributed editing of the name-IP address assignment in theegbof the domain name scheme.

5See for example "Domain name system”, Wikipedia 2005-04h#H://en.wikipedia.org/wiki/Domain_name_
system).

158

8.1 «Code» Architecture Shapes the Social Constitution

Figure 8.2: Tree topology as a "tree”

On each domain level, a server is assigned one or more unaquesof this level: on the top
level domain, each of the names "com”, "org”, "net” etc. aramaged by one server. Simi-
larly, the names of the next levels are also assigned to a&sdfinally, on top of the server
tree sits the "root” server.

The system now works as follows (see figure 8.3): To find outRhaddress of a domain
name, the user querfea so-called "name resolver” which is the DNS client of therusest;
the name resolver now directs the query to the root namerderve

Now the data distribution scheme comes into play: The rowes®nly holds the addresses
of the top level domain servers. The only duty of the root n@emer is the redirection of
the query to the appropriate top level domain server, so ttoraain name ending with "de”
(for Germany), the root server forwards the query to the nseneer which manages the "de”-
domain. Similarly, the top level domain server only redisgbe query to the next level server.
This goes on until one server has a match for the entire doreaire of the query: then the
associated IP address is returned to the user.

The DNS data distribution scheme therefore differs comalalg from that of the IRC:
whereas in the latter, all data is duplicated in and syndheahbetween all servers, the actual
name to address assignment data is only held by the lowdmaxee servers. The upper level
servers including the root server only hold the IP addrestéise DNS servers on the next
lower level, which is a fairly small list.

8Indirectly, through the program that is used, such as a welvder etc.
’Normally, the name resolver queries first the local nameesewhich in turn queries the root server.

159

8 IRC Network Issues

"www.tu-
berlin.de"?

"123.45.67.9"

~ User query and
answer J

123.45.67.9

Figure 8.3: Querying a Domain Name

Advantages and disadvantages

The principal advantages and disadvantages immediatébyvioThe changes in the names
and assignments are done locally, and do not need any ptopagaechanisms to other
servers, since every query directly comes down to the seviaerh holds the name and as-
signment. This also means that there are no synchronizing problekasrithe IRC. Every
server only holds the information necessary for its roldngDNS tree.

The main technical disadvantage is the necessity for quieistart at the top of the DNS
server tree, i.e. with the root servers. This means thatiiciple every single query in the
entire Internet has to pass through the root server, whaisléo ten thousands of queries per
second; the system load of the lower level servers should be coraidie as well. Conse-
quently, many technical improvement strive to lessen the,lsuch as caching mechanisms,
distribution of servers$, etc.

8.1.3 Comparison between the IRC and DNS architectures

The previous description of both the architecture of the Hd@ DNS has been limited to the
technical side. Both design choices have their clear rates) and serve them well, despite
the disadvantages which come with the choices.

Both also share the same topology, but differ in the distidlouof the data: In the IRC,
all servers have the same data (the network state), and @ fodthe IRC to function, this

8Here again a principal statement is made, which skips oveildsuch as caching mechanisms.
9A RIPE report from 2003 speaks of two to three thousands ofigsiper second in two (of the thirteen) root
servers: http://www.centr.org/docs/2003/09/centrQgdpe.html (2005-04-25).
1"The root” is actually served by thirteen root servers, ritistted over the world.

160

8.1 «Code» Architecture Shapes the Social Constitution

data has to be synchronized between the servers at all timesntrast, the most frequented
servers in the DNS network only hold a small part of the endiméa (higher level domain
servers which only hold the addresses of the next-lowel tby@ain servers), while the name-
to-address assignment data is held by the many lowest lexadrs. But in this system, the
data of the higher level name servers is much more impowdarhey determine the way which
the user queries take in the server tree. It is in the soleatisa of the root server (and thus
those who control it) which server receives all queries far tespective top level domain;
the change of one IP address would redirect all data for aeviogl level domain to another
server.

When one reviews the manifold articles about the polititalggle about the control of the
domain name system, it becomes apparent that there is owe pwant of power, the key to
the entire domain name system:

"The Internet relies on an underlying centralized hiergrbhilt into the domain name system
(DNS) to control the routing for the vast majority of Intettiaffic. At its heart is a single data
file, known as the root. Control of the root provides singylawer in cyberspacé?

Ultimately, the combination of the tree topology coupledhihe data distribution scheme of
the domain name system ensured that those who control thegne@rs hold the ultimate key
for the entire system.

The situation in the Internet Relay Chat is an entirely défe one: Although employing a
tree architecture as well, the distribution of all data lestwall servers ensures that in case of
a failure of one server, all other server can recover by neecting the remaining servers to
form a new network (with following resynchronization of data). Therefore, the topology
and data distribution create a network "where each sertsraaca central node for the rest of
the network it sees?, so all servers can be considered root from their point afvie

8.1.4 Architecture as Constitution

| conclude that the technical architecture is an importaatdr for the governance of any In-
ternet application like the IRC or the DNS. For the lattemight be interesting (although,
given the power struggle surrounding this issue, only oflagac interest) to try out alterna-
tive topology and data distribution designs for the domama problem which go beyond
providing alternative or multiple root% In the case of the IRC, the equal distribution of pow-
ers through the topology and data distribution architegtdespite their technical shortcoming
of poor scalability, has to this day served as a stable dotistn of this Internet application.

HFroomkin (2000, p.1)

12Kalt (2000a, p.3)

13see Froomkin (2000, p.39) (text surrounding footnote 61he Folutions he suggests though point all to
institutional changes on top of the same technical systbid:, ipp.171-182.

161

8 IRC Network Issues

8.2 The "Great Split": The Forking of Anet and EFnet

The forking of a open source development project into twoidely considered as detrimental
to the project as whole, because it splits the manpowerablaiinto two smaller fractions. In
contrast, the history and the current situation of the IR@liagtion and software highlights
the positive side of forks, that is the creation of many défe IRC networks with differing
policies and service offerings for the user, and thus modg ¢onovations which — through
the open source property of the underlying code — can spheadgh the IRC networks. IRC
networks have split up into different networks which arespreed through creating code-
based boundaries. But these boundaries are permeablehresmtitat innovations can spread
over these network boundaries.

In the beginning of the IRC, there was only one IRC networkokhivas formed by the
initial servers in Finland, those interested in Scandiaaand the U.S. As of July 1990, 38
servers were counted (see above figure on page 45).

New servers were added by more or less informal coordinatibime coordination was
necessary to keep the network stable, that is keep the fidista between the servers as
small as necessary. A documentation file in version 2.1tésta

3) HOW DO | GET CONNECTED??

The official Irc-Network coordinators are: “vijay@IIl-wi nken.linl.gov"

and "karl@cheops.cis.ohio-state.edu” for the USA. FINISH and EUROPEAN
sites should contact "jto@tolsun.oulu.fi* and he can direc t you to your
best connection.

Everyone that has mailed me and goes "where should i connect? " | generally
say what is your PING statistic to <some host>?". You will gre atly help
us in the early stage by sending us your PING times to these hos ts when

you first send us mail: [...] 15

But this was rather a goal than reflecting reality, as a pgstithe (then) main irc mailing list
("operlist") shows:

I) Our primary concern must be establishing proper routing. This can only
be accomplished be creating a WORLD-WIDE backbone of server s. This backbone
should be based on reliability, geographical location, net work affiliation
(SURANET, ARPANET, etc), and IRC administation reliabilit yldedication. 16

The mailing list contains several efforts to structure tR€ Inetwork, i.e. to coordinate the
routing between the servers. But in general, there was @ stiforcement of any coordina-
tion, especially for servers not in the backbone part of R€ hetwork.

YThis is not the geographical distance, but the time thata piatket travels between two hosts on the Internet.
This is called the "ping time", because of the Unix prograimdp used.

1Sirc2.1.1/doc/NETWORKING")]

eBerlo, John J (1990-04-2@perators READ THIS!!!I Mailing list IRClist (1991)

162

8.2 The "Great Split": The Forking of Anet and EFnet

8.2.1 Open-server servers vs. closed-server servers

Among the server administrators, there were two basic opgwabout who should be generally
allowed to the network: Open server vs. closed server.

Those favoring open server argued that any server shoullidveed without regard to any
formal process or criteria. They wanted to uphold the funelaial principle of openness. In
order to serve this openness principle, the open serveopss also suggested to change
the topology of the network from a tree to a star topology:rig@erver should connect to one
central server.

In contrast, the closed server fraction argued with sgcand IRC net stability. If anyone
was allowed as server, it would be to easy to gain the power tR& admir’, and thus at the
same time IRC operator status, ultimately giving all uskeessame power in the IRC network.

As is often the case, there were two small groups of admatats, with a third big group
of admins without a clear opinion towards either side. Atfitsis conflict was discussed over
months in the diverse fora, IRC channels as well as the t'cinailing list. After the dis-
cussions prevailed over months in without reaching a cawserihe closed server proponents
decided to exclude the open server proponents from theiop#re network.

The open server proponents set up a central server at ‘&kslby.edu”, and allowed any
other host to connect to it as server . This network was namppobgriately as "Anarchynet”
or "Anet". Those favoring the close server concept renainei hetwork to "EFnet"” for "eris
free network".

As usual in such heated debate, there was a majority of sadvemistrator who were not
sure where to go: Anet or EFnet. Some administrator tried édiate between these nets
by setting up a server which served both Anet and EFnet. Whdel not clash with the
basic principle of the Anet (on the contrary), it went agaih® close server concept of the
EFnet. This therefore called for strong action, implemeérate «code» rule, first as patch of
the current server version, then as full blown mechanisrerfollowing server version: the
Q-line or "quarantine" line (algorithm 16).

Algorithm 16 "Quarantine” configuration line (Q-line)

Quarantine lines. These lines disallow connections to the
specified server and drops the link to anyone connecting to them.
Q::they have a server open server:eris.berkeley.edu

Source: [irc2.5.1.bu.08/doc/example.conf:109-111].

This mechanism allows the server administrator to set aesdovquarantine, that is to
disallow any connection or data transfer between the IR@aoritand this server, as well as

1t is important to note that the dispute went around ogenverservers, and not opesiient servers. With an
server in the IRC network, one is automatically an admiatst, while with a client connected to a server,
one is 'only’ an IRC user.

163

8 IRC Network Issues

servers connecting to the net via the quarantined serveic&by it ostracizes the server and
all servers connected to it from the network. The intergsfiature of this Q-line mechanism
is that it only works if all servers invoke the quarantine.

It is interesting to see that the Q-line apparently was osbld.in that incident. Later server
versions still incorporate the Q-line mechanism, but iesigexplicitly deprecated. The threat
of reactivation of this mechanism is still prevalent.

The Q-line mechanism allows for exclusion, ostracism framgerver community, but with
the high hurdle of unanimous action. Since the network woudk if not everyone invokes
the quarantine, this is a strong hurdle to its use. Here, oeffectively used as a supporting
mechanism for community binding and decisions.

This event might be an example for Lessig calls the "openusiasi” principle®: After it
became clear the the open/closed server conflict could notdmved through debate, this
conflict was "solved" by proof of concept: each side set umigtevork they wanted, and let
the undecided server admins as well as the users decides lcade, the EFnet survived and
thrives today, while the Anet left no traces other than thefloz.

18_essig (1999c¢); in an earlier draft dated March 5, 1999 (fER¥), Lessig used the term "open forking” which
in our context fits better than the more generic "evolution”.

164

Part |1l

Some Notes on the Concept of
«Code» Governance

As no better man advances to take this matter in hand, |
hereupon offer my own poor endeavors. | promise nothing
complete; because any human thing supposed to be com-
plete, must for that very reason infallibly be faulty.

Herman Melville, Moby Dick

165

Introduction

This part concludes my exploration of the «code» governaspects of the Internet Relay
Chat as a self-organized, self-governed Internet appmicat revisit the main hypothesis of
this work that the analysis of the source code of the IRC Hewdiatinct «code» features, and
that the «code» constitutes a regulation system simildsubdistinct from the legal system.
As this work is exploratory in character, no ready-made then «code» governance can be
offered. As preliminary results, the following findings dam offered: In chapter 9, | reiterate
each key aspects of a regulation system according to thelfifekmatica” model introduced
abové®, summarizing my findings under the appropriate aspectspt@ha0 summarizes the
findings concerning the five types of rules as introduced eloFinally, chapter 11 offers an
outlook of further research that could built upon the «cogewernance model developed in
this work.

9Chapter 2.3.1
20Chapter 2.3.2

167

168

O Lex Informatica Revisited

In chapter 2.3.1 | have introduced the cor

Legal Regulation Lex Informatica
cept of "Lex Informatica” (Reidenberg (1998)) Framework Law Architeoture
. R Jurisdiction Physical Territory Network
which offers the key concepts of a regulation | Swwoyicom | Tesmioal Capabies
d h | | t d m“’\ Expression Customary Practice
system, and compares the legal system an e Source St ——
«code» regu|ati0n system, or "Lex Informat+ customized Rutes Contract Configuration
. Low Cost Off-the-shelf configuration
ica”) based on these concepts. ustomization| - Nedorao cos rstaaie
rocess stanaard form configuration
In this section, | apply the results of my em; ST uer choce
Primary Enforcement Court Automated, Self-execution

pirical analysis to each of these key concepts,
thereby developing the "Lex Informatica S'dei_ex Informatica (same as table 2.1)
one step further.

9.1 Framework

Reidenberg describes the framework as the "basic buildmgkb of the respective regulation
system. In the legal system, "law” functions as the basitding block, and for Lex Infor-
matica he offers "architectural standards” which "define Hasic structure and defaults of
information flows on a communications network”, with the HI $tandard as one example of
such a building block

What defines the basic structure and defaults in the Inté&ekty Chat? Beginning with
Reidenberg’s suggestion it is clear that the communicatemveen the components of the
IRC (servers, clients, etc.) have to standardize their comaoation.

One set of standards, also available for the IRC, are thdsaittied to an institutionalized
standardization body: Two times, 1993 and 2000, such IR@dstas have been submitted
to the main Internet standardization body, the Internetifgeying Task Force (IETF). In
1993, the IRC client-server protocol is publisheand in 2000, four documents describe the
architecture, channel management, client(-server) pobend server(-server) protocol of the
IRC3. These standards certainly provide an overview of the "éanrk” of the IRC.

'Reidenberg (1998, p.570)
20ikarinen and Reed (1993)
3Kalt (2000a,b,c,d)

169

9 Lex Informatica Revisited

But these documents only provide a snap shot of the IRC getths described, the IRC
server code has been continuously changed and updatedneiityh major and minor changes
in client-server and server-server protocols, in impletagon and functionality. These changes
can be seen as a hallmark of a self-organized and «codesrgualgetting like the IRC.

An indication of such adaptations of the client-server peot has been shown for the
Eggdrop user béf where one configuration setting allowed to specify the nétwo which
the bot connectédthereby enabling the special feature of that respectitwark.

The point made here is that, while standards and prot@®lsublisheccertainly are an
important part of the «code» regulation framework, oftezytio not draw the entire picture
of the system. The ultimate reference for the architectareanly be provided by the actual
code of the system, in case of the IRC the server source code.

In «code» governance, tlimmeworkor the basic building block ithe «codepthe software
and hardware of a system. Standards are important, but dewnly an approximated view
of the real systerfi.

9.2 Jurisdiction

Jurisdiction denotes the scope of the regulation regimeéenshich the rules are valid and
enforced. In the legal system, the laws are principally @efiny a territorial jurisdiction. For
Lex Informatica, Reidenberg provides a somehow vague "ortinor "network spheres”:

"[T]he jurisdiction of Lex Informatica is the network itdebecause the default rules apply to
information flows in network spheres rather than physicates”

Based on the analysis of the Internet Relay Chat, some chrdns can be made.

IRC border (1): Internet Layers
The choice of the IRC asiternet applicatioralready includes a «code»-jurisdictional limita-
tion: The IRC is positioned in thapplication layerof the Internet.

4See above chapter 6.2.1.

5See algorithm 14

6As an interesting thought that may be worth pursuing is ttierdince here between law and «code»: In
law, the statutory code itself (or a single case) seldomigesva full picture of the legal situation at hand.
Instead, only a thorough document analysis including comargs, other cases and other secondary sources
can provide a sufficient picture. In comparison, the ultensaurce for the understanding of «code» is the
«code» itself, the source code of the software, or the teahoapabilities of the hardware.

"Reidenberg (1998, p.570)

8Here | only examine the technical ISO-OSI model. There ae tilose which are derived from the technical
models in legal scholarly papers, such as a three-layereeiiroBenkler (2000, p.562) and following Lessig
(2001, pp.23-5), but they add no further insight to the nnattéand.

170

9.2 Jurisdiction

Layering is a commonly used model with networks which hetpsetiuce the complexity
of its design. The best knowne is the Open Systems Interconnection (OSI) m¥tehich
distinguishes seven layers, from the lowest "physicalfatgethe top "application layer”.

As an application, the Internet Relay Chat is positionedchi topapplication layer. As
consequence, any issues of the lower layers are outsidB@gurisdiction”, out of its gov-
ernance reach. On the other side, any changes in these lyegs Imay affect the IRC, as it
uses the services that the lower layers provide.

IRC border (2): Application
Inside the application layer, a second line can be drawn dvdifferent applicatios, al-
though these lines can get blurry sometimes.

Generally, applications such as the world wide web, e-npagkr-to-peer networks each
create their own jurisdictions. Their respective «coddegare determined by the application
code and the standards and protocols which the code imptem&herefore the IRC with
its server code and the IRC client-server protocol, canfangle be distinguished from the
world wide web, with its servers and the http protocol.

But for a specific functionalit}?, the border between these two can be crossed: one can
imagine for example that an IRC admin provides a web intetfam her IRC network.
Also, the example of the CTCP functionalfitynside the IRC shows another blurred line: The
messages are exchanged over the IRC lines, but the actuaingedthe messages lie outside
its scope. This allows for example &stablisha direct Internet connection via the IRC; the
connection itself then is directly between two IRC clieti®reby circumventing the network
for the conversation.

These remark point to the question of how the term ”jurisdi€tcan be applied, rather
than giving final answers. But the lines between applicatievertheless play an important
role in the question of the «code» jurisdiction.

IRC network borders

Finally, "the” IRC consists of many IRC network which are noterconnected with each
other. Each of these forms its own jurisdiction. An indioatiof a "strong” border is when
the IRC server software between different networks do netraperate. This might be only

9Another early example, written for the predecessor of theriret, is the ARPANET reference model: Padlip-
sky (1982, pp.12-3).

105ee for example Tanenbaum (1989, pp.19, 528-530), Per200(p.4).

LA similar argument makes Wu (1999).

21t could be interesting if the concept of "functional, o\asping, competing jurisdictions” (Frey and Eichen-
berger (2000, pp.4-5)) could be applied to the «code» domain

13This is not to be confused with so-called "web chats”, whioh single-server chats which can only be used
through the web page interface, and not reached by an IRftclie

And indeed, a google search for "irc web interface” showsmalner of entries.

15See above chapter 3.1.1.3

171

9 Lex Informatica Revisited

partially intentional, because the implementation ofetdint network policies and feature sets
dictates changes in the server-server protocol, so thablaateroperability often comes as a
by-product of the functional differentiation between tlegworks.

The "jurisdiction” of the IRC is determined by a number of tfas:

a) Network Its position in the application layer according to the netk layer model

b) Inter-application Its position as an specific application, separated by finility, proto-
cols and code, although these lines can be blurred

c) Intra-application Inside the IRC, each IRC network forms its own jurisdictiemmetimes
underlined by the non-interoperability of the server saftmwbetween networks.

9.3 Content

The content of rules in a legal regime sees Reidenberg agrggfrom “statutory language,
government interpretation, and court decisidhs’For Lex Informatica, he sees the content
"defined through technical capabilities and customarytpras™’. As example he describes
how the SMTP protocol for e-mail defines the rule that the fFrdield identifies the sender,
with the "customary practice” of mail servers that this figbertains to the actual person” of
the e-mail.

The examination of the IRC has shown how the technical céipabiof the IRC server
code builds the foundation of the content of the IRC «codéesruThey determine through
their server-client protocol which features are availablehe users. The server code also
determines all IRC internal structures, like channelspitvgers of IRC operators, etc.

A notable exception from this rule are the service Botghich as a centralized service in
a distributed server network provide additional capabaitnot available through the server
code. Also important are the user bStahich use the client-server protocol in order to of-
fer features not available through the servers, for exaropéanging the channel ownership
policies set by the server. In these ways, the main «codasategy content in the IRC is
determined in the server code, but due to its distributedreatwvith the server-server and
client-server interfaces present, surprising and un@druses are possible, changing the set-
ting which can lead to adaptation in the policies (e.g. bypliog official services, like the
channel registration services).

The customary practices are guided, as the name impliesidtgras or norms. Indications

16Reidenberg (1998, p.570)

Yibid.

18see chapter 6.3 (channel services) and chapter 7.4 (Unantits)
9Chapter 6.2

172

9.4 Source

for such norms were in the discussion of the IRC operatorisabier®, but also in discour-
aging the use of features without removing them from the £od®ne could also interpret
the unsuspected uses of existing features, such as useabdtaistomary practices”, a use
not intended when designed and implemented, but later nsie inew, specific way. These
practices form an important element of the dynamics of «e@iwernance settings.

9.4 Source

The source of regulation in a legal system is given by Reideplvith "the state” in which
a "political-governance process ordinarily establistes gubstantive law of the land”. For
Lex Informatica, Reidenberg suggests both "technologiste "technology developer and
the social process by which customary uses evolve” and wedaiethe "technical standards”,
and the user who "adopts precise interpretations througttises

With my «code» analysis in mind, we can sketch a slightly namecise picture of the
sources of regulation in the IRC.

The first IRC software, and thus the first set of «code» rulagwesigned by the creator
of IRC, Jarkko Oikarinen, adopting from other similar apptions not only technical struc-
tures, but also governance patterns such as the role of @pRratot’. Many of the basic
elements that define the IRC remained unchanged from thiséirsion on, such as the topol-
ogy and data distribution, the IRC operator role, chanretts, Oikarinen thus is not only the
(technical) creator of the IRC, but, from the «code» goveceaperspective, the "founding
father” of the basic "constitution” of the IRC.

The pivotal decision by Oikarinen which determined the ‘teell of future «code» rules in
the software was to distribute the IRL3 source code packagand subsequently to put the
software under an open source liceticeThis created two further sources of changes, next
to Oikarinen: Other coders who contributed to the sourcegcadd by the provisions of the
GPL, made them accessible as source code as well; and thediRi@istrators, who have the
power to change any aspect of the IRC server, limited onlyhieyimteroperability with the
other servers in the network.

The availability of the source code also has created a kingowafer balance inside the
IRC: while changes in the server cofter all serversis made by the coders, the adoption
requires the agreement of the IRC admins. This explains Wwhpges in the source code were
implemented so often as configurable options through mesmmansuch as patches, #define

20Chapter 7.2

2!See the R-lines in chapter 5.2.2

22All quotes from Reidenberg (1998, p.571)
23See above chapter 7.1

24See appendix, chapter 12.7.

173

9 Lex Informatica Revisited

directives, etc.

Being open sourced, coders cannot force IRC admins to adegt thanges, as is common
in closed source scenarios, where lack of interoperalafityackward compatibility can force
those who run the software to upgrade to a newer version,teeeigh it might be not in their
interest. On the other hand, IRC admins have much more fre¢daleviate from net-wide
policies, only as long as the interoperability is ensuredlaking the source of rules brings
up a different set of governance opportunities and chadlendhe kind of openness in the
distribution of the software here is the key aspect.

Another source of regulation is thRC user One point not further examined in this work,
but quite probable, is that simple users have made impoctanttibutions to the IRC soft-
ware development process. This is a basic characteridtiasyoopen source development.
Lessig (1999c, p.113-115) has named it "universal staridgiging it the status of a «code»
governance constitutional value.

The IRC user also have been the source of regulation witthanetode» mechanism: the
IRC bots. As shown in the example of channel and nickname mhipeissues (chapter 6.2),
these bots have been employed to change the policy set br@efficials (no ownership
of channels and nicknames), and may well have been a drieirg to implement "official’
ownership policies, such as the DALnet or Undernet services

In the legal scholarship, such "user regulation” is oftelbssumed under the label of "digital
self-help’®®, and in software engineering the users are also recogrozaeyt a more and more
active role in the design and implementation proce8s@e IRC underlines the importance
of the ability of users to contribute to the «code» govereafaxilitated here both by the open
source code as well as the open client-server interface.

Open sourcing the server code has widened the "source” fatec@and thus for «code»
governance mechanisms, leading to constant contribufronsthe usership at large.
Another important source of «code» governance in the IRCecdmough the open client-
server interface which led to the development of the IRC lbgts.

9.5 Customized Rules and Customization Processes

This is an important point and a wide field for «code» goveceasettings. Most hard- and
software provide some kind of interfaces through which teersi access the functionality
offered by the technology, and adapt it towards their needs.

For law, Reidenberg offers the legal institution of "cotfaas customized rules: The ability

25See for example Bell (2000).
26see for example IEEE (2004, ch.2.2).

174

9.5 Customized Rules and Customization Processes

of private parties to customize their interactions throtighprocess of reaching a contractual
agreement. This inherently also contain another conmotdhiat appears detrimental when
applying this model to the «code»: the notion of the legatesysas hierarchical default rule
system, with the contractual relationship a "deviatiom@hfrthe legal default:

"In the legal regulatory regime, private contractual ag@ments can be used both to deviate from
the law’s default rules and to customize the relationshipvben the parties. Such deviations
are only available if the law permits freedom of contract doés not preclude the participants’

actions”(Reidenberg, 1998, p.571)

In contrast, The IRC is a self-governed setting, so neittiéerchical 3rd party controllér
as the government exist, nor is it governed by any overagcbiganizational entity, such as
university, firm, or consortiudi. Consequently, | regard the customization rules and pseses
on both the level of code development and implementatiodh carthe level of the use of the
IRC software.

9.5.1 Rule customization on the «code» level

The examination of the IRC source code has shown that the bagte applied various mech-
anisms in order to facilitate governance decisions forehelo install the server software. |
have tried to develop a first step towards a taxonomy of thes#ganisms by subsuming them
under the four steps where customization of the softwarestgace: Source code access,
System access, Interface access, and User access.

9.5.1.1 Source code access

The IRC server software is distributed as source code paclaygarchive file containing all
necessary files in order to build the server program.
There are several reasons for this kind of distribution et hese include:

e Distribution file size This distribution is the most efficient one: a compressethiae
file containing source code can be many times smaller thanragressed) compiled
binary program files, and thus takes up less bandwidth. Alsall changes can be sent
as patches (see below), even in e-mails, whereas binarygmoige patches tend to be
larger. Moreover, it may be easier to mirror a smaller sowade archive file than a
larger binary file.

27See Ellickson (1991, pp.130-132).

283ee Kesan and Shah (2003b). While the IRC would fall under ttagegory "open source movement”, it
differs in that the IRC developers and users are much monetigoupled than for example open source
operating systems, or other application software.

175

9 Lex Informatica Revisited

e Platform adaptationlt might be necessary to make small changes to adapt theaseft
to the specific configuration of the computer where the sottwido be run. The source
code can cope at build time with these differences (for examh the auto-configure
process; see below), or the installing person can make ttemgges by hand. With
binaries, a distinct file per specific computer configuratias to be built and made ac-
cessible, or the program has to cope with it through progradhconfiguration routines.

e Licensing The main non-technical reason for many open sourced prgis the li-
cense. Like many others, the IRC server code is distributeteiuthe GNU Public
License (GPL) which necessitates that the distributorge@sy access to the source
code, even if the software is distributed as binary progréam fi

e Governance Another important reason — conforming with the main hypsth of this
work — is to give the installé? options to change the working of the software, including
its governance characteristics.

Here | distinguish several means how the software can begeldarChoice of versions, source
code patches, source code configuration, and direct soadeeahanges.

Choice of Versions

This is probably the easiest way to choose between sets dezaules. In the IRC, admins
have the choice to upgrade or not to upgrade to a new versiohinasome cases to choose
between different series of software versions. The latieant can be seen for example in the
EFnet, where at times the comstud (ircd+CSr), TH, and Hybeides were available for the
admins to choose from. Also, many different IRC client peogs are available to the users.

In the IRC, the choice of versions is an important instruntegive the coders the incentive
to create admin-acceptable software. Mailing list messagggest that admins have been
guite conservative with regard to version changes: oncevaiseins stable, there has to be a
good reason to replace it with an potentially instable ondRIC history, there might have been
cases where the version changes have been enforced by niaingw version incompatible
to the earlier version. Such severe limitation in choice Maertainly have been preceded by
an extensive debate by all admins and coders.

The choice of versions or concurrent series of software esraeans to choose between
different «code» rule sets. This choice of versions is moitéd to source code versions of
«code», but generally available with any product, be itfetbor open source) software or
hardware.

291 will refer to the person who installs a software as "inggll in the case of programs which will install
software, these will be referred to as "installer programs"

176

9.5 Customized Rules and Customization Processes

Source Code Patches

The previous choice of version is a very coarse one: One hasomse a «code» rule set over
others, without the possibility to selectively choose #iiecules or features. With patches,
coders can pack one or several features into one or more fl@hvhich the installer can
choose to apply. This is a convenient and often used way ngttondistribute features
changes, but also bug fixes. The patch files tend to be veryl,sodhat they are sometimes
even distributed through mail messages.

Source code patches consist of sets of code lines, whergaa@ddiembedded data specifies
which code lines are to be replaces with the new lines in a #lespecial patch program
(in Unix systems appropriately named "patch") finds the adeclines, and upon a match,
replaces it with the new ones. Thus, an automatic sourceduaiege is applied.

In the IRC (and undoubtedly in other applications as weligse patches are also used to
give the admin choices over «code» rule functionality.

This patching mechanism also exists for binary program.filése advantage of source
code patches compared to binary patches lie in their traespg Since the patch is simply
a text file, it is easy to understand what the patch is doingcolmparison it is usually not
possible to understand what a binary patch will change; eseerse engineering does not
help, because the contents of the patch is taken out of dpmibich is even more necessary
for understanding the binary code than it is in source code.

Source Code Configuration

Once a version is chosen, and the appropriate source cadeepatpplied, the software needs
to be configured. This includes the adaptation to the hamehlanad software of the computer
where the program is to be run, the network environment, isas®ther information needed
to run the program.

The IRC server configuration comes in several flavors, ddpgrah what the coders chose
to use. In the most simple case, it consists of editing oneaerfiles, adding or changing
values at certain places according to the instruction giwethe coders which in the IRC
server distribution is explained in the file "INSTALL". Ineélcase of the IRC server software,
this is usually the "include/config.h" file.

A more sophisticated means are configuration scripts. Thesesmall script programs
which the admin runs; the script now requests all necessé&wymation from the admin, and
makes the necessary adaptations to the source code. Aftisiviae software is ready to be
built into the binary program. These scripts can either b#&evwr by the coders themselves, or
use a prefabricated configuration tool, such as the GNU aof$ic In irc2.8.21, for example,
the script "Config" has been written by one IRC coder (Darreed; recent versions in all
major networks have applied the GNU autoconf.

30See http://www.gnu.org/software/autoconf/.

177

9 Lex Informatica Revisited

However the configuration process is done, it is an impodsey for the admin to decide
upon the «code» rule regime that her server employs. Iniaddi the choice of the server
version or series, and the choice of patches, the configuarafithe source code allows for a
fine-tuning of the various aspects of the code.

It is important to note that all these choices are facildaby the coders. They have to
provide these configuration option for the installer, ansl tsamake sure that the «code» does
work properly for all possible configuration settings.

Direct Source Code Changes

The ultimate power that an installer has with regard to tlog@m is to change the source code
itself. For stand-alone application, this power is limitady by the programming ability of
the installer. In networked applications like the IRC thbuilpe changes must be interoperable
with the other servers in the network.

9.5.1.2 System access

In difference to source code access «code» rule patteiasrt the following types presup-
pose a built binary program. In the case of open source pmgyrthe installer has compiled
and linked the software. In the case of closed source sadiwiais is the state in which the the
user acquires the program.

The "system access” type differs from the next one ("integfaccess”, below section 9.5.1.3)
in that it mainly applies to the software before it is started

The following categories can be subsumed under this typsiorgng, patches, and binary
program configuration.

Versioning

Similar to its source code equivalent described above,rsatin provide several versions of
the same software with different properties. In this calse,user can choose between them
and thereby chooses different «code» rule regimes.

Patches

Again similar to its source code equivalent. Binary patatigenge the program and thus the
implemented «code» rule regime. But in difference to soeame patches, it is difficult to
see what changes exactly are applied with the patch. A reesrgineering of the patch itself
will not get much information, if any. Only reverse enginegrthe patched binary could shed
some light on the changes. One has to rely on informationmapeaying the patches.

Configuration
In difference to source code configurations which affectsthepe of the binary file, this kind
of configuration affects the program in its running state.

178

9.5 Customized Rules and Customization Processes

Configuration of a binary file come in two flavors: as a configjorafile, or as startup op-
tions. Inthe IRC, both methods are used. With the configomdtie, in IRC called "ircd.conf",
the main configurations of the IRC server are made in form efctbnfiguration lines. Here,
a number of policies are determined, for example which gsafpusers may enter the IRC
through this server, which other servers may connect tohigtuk-lines are applied, etc. For
an IRC admin, the main choices are made in this file.

With the IRC server it is possible to reread this configurafite through the IRC operator
Ireread command or through the restart of the server (comnigastart). Accordingly,
when the server is running, the admin can make changes tottiigeration file, and activate
these changes through a reread.

This configuration file resembles the preferences file oféem$n software which normally
is manipulated through an in-program preference pane dfasioser interface. The differ-
ence becomes obvious in the IRC: the admin is different frioenuser or the IRC operator.
The above examined concept of thdine command for example would not be possible
if IRCops or users generally had access to the configuratenTherefore this allows for a
access separation between different roles in the setting.

The other mechanism for configuring a program is to providdwp options. This method
is applied when a program is started from the command lindéres terminal program. Nor-
mally, the options available here are a subset of the corafigur file options. If a program is
started with these options, they will override the configjorafile options.

9.5.1.3 Interface access

Software (as well as hardware) can provide interfaces hereftecessary link to other com-
ponents of a system, or through which the functionality ipaded. Often functionality-
expanding interfaces are referred to as "plug-ins". In #@seoof IRC, there are two main
interfaces in the server, one to other servers in order tm fine network (specified in the
server-server protocol), and the other to clients throuditlvusers connect to and use the
IRC (specified in the client-server protocol).

Another kind of interface in the IRC is the R-line feature i02.5.1.bu.09 (Nov 1998
the acceptance of a new IRC user is made dependent on anayiesgram to be provided
by the IRC admin. Into this program the admin can make anylchlee wants; the result (yes
or no) will be sent back to the IRC server, which then accaigiecides upon acceptance
of the user. Here the IRC server provides an interface toxterreal program, with a small
protocol (reply string: "Y" or "N").

With "R-lines", this interface can be interpreted as sulbsity rule: The coder transmits the
right to form arbitrary criteria for new IRC members’ accapte rules. Without this interface,

31See also above chapter 5.1.2.

179

9 Lex Informatica Revisited

admins could only use the other mechanisms (I-line, K-limeich are based on checking the
user/host resp. user/IP address pair.

System interfaces code rule changes types are a very pdwstiument in the relationship
between coders and users. As soon as the interface speaaifigatotocols, application pro-
gramming interfaces) are made available, the software eaaxpanded in unforeseen ways.
See for example the case of bots (chapter 6.2) which give §&sLguite some power, just by
automating the client-server interface of the IRC.

This code rule change type also rises in importance withéhddncy to modularize soft-
ware into components, making interfaces for communicadiod interaction between these
components an integral part of a system. The more and cortiptarterfaces, the larger the
opportunities to create components which use these iotgfa unforeseen ways.

9.5.1.4 User access

On the level of the usage, the available commands deteriménavailable actions. But as the
examination of the IRC has shown, there are different waysipdement a certain function-
ality.

The candidates for these code rule types are: hard codediticoally limited, functionally
limited, preset choices, settable.

Hard coded rules
This is certainly the strongest constraint that coders ngsldment: These rules are fixed in
the code, and there is no means for the users to change itgitleha

Examples include the numeric channel situation, with thenclel visibility property? hard
coded with specific channel number ranges, as well as theitimiax number of users" fixed
property3.

This «code» rule pattern also could be tagged "uncondifpaetivated”, because there is
no mechanism which allows someone to choose over the aotivat the rule. Instead, as
soon as the appropriate situation arises, the code autatiagxecuted its rule.

Conditionally activated rules
In difference to the hard coded rules, this type of rules isvated according to conditions
which can be changed by some principals.

Examples include K-lines and ban lists. An IRC official add$ir€s into the server con-
figuration file, and subsequently these users cannot ergdRI@. A similar feature, the ban
lists, allow channel operators to set entry denials for oleén

The rule conditions can be coarse as in the case of earlyds-(ionly banned or not banned

32See chapter 4.3.1
33See above chapter 4.2.3

180

9.6 Primary Enforcement

as condition), or quite sophisticated (time-limited bam#ater K-lines; R-line, D-line, E-line
as further instruments), depending on what the coders napiemented.

Functionally limited rules
In difference to aforementioned types, this type pointdhoadction part of the rule. | am not
sure if this can be counted as a code rule type; but this typarsquite often in a «code»
setting. In conditionally activated code rules, espegialith commands, coders often limit
the action part functionally by allowing only a range of acs.

An example is thekline command. Instead of giving the IRCop full access to the K-
lines in the server configuration file, only additions to i allowed through the command.
Full access here is reserved to the IRC admin who has filersyeteess to that file.

Preset Choices
Another technique next to functional limits is to give a m@tlsst of choices from which the
user can choose a setting. These choices can either be gxbaoslimited. The visibility
property and numeric channels are one example: users h&tse from the number range
of channels in order to get the channel with the desired ptpgpublic, secret, or hidden
channel). There was no means to change the property oncbhdahaea was chosen.

Another kind of preset choices would be one setting, fronctithese choices are available.
The visibility property in named channels is such a choibe: channel operator can choose
from three settings.

9.6 Primary Enforcement

Reidenberg compares the legal systeaXspostenforcement to thex anteenforcement in
Lex Informatica, where rules implemented in the hard- arfth&oe are automated and self-
executed.

Auto-enforcement is not anherentproperty of «code»; coders either implement an ex ante
enforcing rule in code, or choose to implement the equitaléan ex post enforcement: The
breach of a substantive rule leads only to a warning, or cidie of evidence which then can
be used to decide over appropriate sanctions.

This is a topic which is detailed in the following chapter IOrale types in «code».

Conclusion: «Code» as Regulation System

The "Lex Informatica” model has served me to show that keyatgof regulation system, as
they are well-known in the legal system, are also presertienctode», the software as un-
derstood as regulation modality: Tlrameworkconsists of the actual code. Theisdiction

181

9 Lex Informatica Revisited

is determined by its position in the network layer model, &l as (in the case of the IRC)
its status as an application; in addition, each IRC networkns its own jurisdiction inside
the IRC. The content, the actualles are also formed by the code, with norms guiding the
practices.

Thesourceof the rules were broadened by the decision to distributedle as open source
software, so that all participants of the IRC — from IRC admaithe simple user, in addition
to the coders — could contribute to the code. In additionpgen interfaces have allowed for
further «code» rules. Finallgustomized ruleandprimary enforcemendre important topics
and thus detailed in the next chapter.

Judged from this discussion of key aspects, it is safe tondlaat the notion of «code» as a
regulation system is indeed a useful one, as it provideswaeinark for the explanation of the
structures and developments as the have occurred in the IRC.

182

10 Rule Types in «Code»

In the summaries of the chapters in the main part of this woakeady have reviewed the
rules types as introduced in chapter 2.3.2. Here | will tfegeetry to make some conclusions
based on these summaries.

I have not found mangubstantive rules/hich by itself determine rewardable or punishable
primary conduct. This may be due to the categories of sooratol of "reward” and "punish-
ment”. «Code» allows for the implementation of substantides which are not seen as such,
but instead as "objective” constraihtg hose structures that | have labeled as "constitutional”
structure or design might be interpreted as such "obj€gttives, such as the inability to name
channels (in the numbered channel de$ign

But another interpretation is possible: The "maximum ugenschannel” case has shown
how a fixed constraint, the substantive rule of limiting memsiip in channels to ten individ-
uals, has been transformed into a per-channel configursgitimg, to be decided by a channel
operator. Coupled with the ability or any user to create neanoel, and the abundance of
channels (but not names), the need to fix a substantive rgieoide» was not given. The tech-
nical abundance might reduce the need for fixed substantige in «code», instead offering
configurable environments with a set of controller-setegind constitutive rules in place.

The development afontroller-selecting ruless especially obvious: In the beginning formed
as three-level hierarchy—IRC admin, IRC operator, and-usehe IRC successively ex-
panded this hierarchy: channel operator and local operatmannel manager or founder
with the registration services, and their respective ckhafiicial hierarchy systems; and the
UWorld with its access system.

This was accompanied lponstitutive rulesto regulate the relationship between the con-
trollers, and check their powers. On the channel level, o&c®” mode is an example, where
before one had to give chanop status to all speakers in a atedechannel and therefore
unchecked power over the entire channel; the voice mode Howeal to give only a 'voice’
when the channel was moderated

Another interesting example is the file interface, coupléith whe limited/kline com-
mand, which gave of IRC operators the ability to add, buthegithange nor remove (nor

1See Lemley (1998, p.677).
2See above chapter 4.2
3See above chapter 4.3.2.

183

10 Rule Types in «Code»

read) the K-lines in the configuration fileAnd the logging facilities allowed the IRC admin
to control the use of the commahd

Logging, together with notices create some transparendyharefore are alsprocedural
rules Here again is a tendency towards expanding the amount afniaftion availableas
well as widening the audience, letting users receive ngticemerly available only for IRC
operators.

On a more constitutional level, the ability for anyone toaibtthe source code and study
might be also categorized @gsocedural rule The example of the UWorld as closed source
with its commands on the highest access level (nuking, amthffttmdcommand effectively
circumventing any built-in control mechanisfsight be seen as a breach against the proce-
dural rule of the principal transparency of the technicahponents of the application. If so,
then the replacement of Uworld by a open source counterpaytlra seen as remedy of this
breach.

Finally, the majority of commands presented in the chapaeesemedial rules /kick
and bans on the channel level, their counterparts on semdanetwork levelfkill , K-lines
etc.) and the commands made available by the servicé:libey all serve to apply sanctions
against other users. And again we can observe here a swecassctional differentiation,
where more and more fine-grained tools are made availabi#fferent contexts (network,
server, channel) as well as on different levels of the usrahchy.

4See above chapter 5.3.

5See above chapter 7.3.2

5For example the number of notices sent by the IRC server;saeeahapter 7.3.1.
’Above chapter 7.4.2.1,

8Above chapter 6.3.

184

11 OQutlook

In the previous chapters | have shown how in the InternetyR€laat (IRC), the participants
have employed «code», the underlying technology of theiegtpmn, as main means to gov-
ern themselves. Specifically, | have interpreted the IRG®uodeas a regulation system
by identifying code structures as "rules” which shape th@asituation, and changes in the
source code as adaptation of the governance situation toyoigasocial contexts. In this
sense, the technology itself can be seen as regulatiomsysitailar to but distinct from oth-
ers, such as the legal system; | have employed the term «gmdesnance for this theoretical
concept.

The goal of this work has been to explore the possible vigloli this concept, for which |
have chosen the IRC as a self-governed Internet applicafihnle this goal has been gener-
ally reached, further research is necessary to exploraahdity of this model for other socio-
technical settings, as well as to work on its methodologpgiroaches. The next section 11.1
outlines some possible areas which appears to be suitedoeméxhe «code» governance
concept.

Once this concept has shown its usefulness, | can see twodrateemplications for the
academic study of socio-technical settings (section 11Er computer science itself, the
«code» governance model strongly suggests to systenhaticebrporate social structures
and dynamics into the design process, instead of relyinghernréquirement analysis and
software maintenance processes to cope with these issudditiohally, my model could
prove instrumental in exchange research results in tesbo@ studies between computer
science and other concerned disciplines, giving the foranstructured way to incorporate
economic, legal, and social science concepts into the teahhomain, and at the same time
deepen the understanding of technology in law, economigsacial and political science.

11.1 Validating and Refining the «Code» Governance
model

In this work | have shown that there are indeed structureschiraciges in the IRC source
code which can be linked to the social situation and dynawii¢se IRC participants. From
this | have concluded that, in the case of the IRC, «code»rganee serves as useful model

185

11 Outlook

to explain these code structures and changes as "reguiatstem”, to treat the «code» as
"rules”, and its creators as "regulators".

I have shown the usefulness of the «code» governance maweidrexactly one example,
the IRC, which also has been carefully chosen for this egpilan, exhibiting these properties:

«CODE» AND NORMS ONLY: The IRC excludes influences from the "law" and "market” reg-
ulation modalities, thus leaving «code» and social nornEeglent modalities.

OPEN SOURCE SOFTWARE The underlying software of the IRC is open sourced, so thst i
in principle available to all participants, for examinatior contribution to its develop-
ment.

INTERNET APPLICATION: The IRC is positioned on the application layer in the Inétrn
therefore all technical structures of the lower layers haeen considered exogenous
in my examinations.

As my exploration is limited to one very specific Internet kgation setting, further work

has to be done in order to show a more general viability of tteele» governance model. It
should be challenged against other techno-social seftiaghow its potential as well as its
limits. In the following subsections, | identify three aseahich appear worthy challenge for
my model: social software, the domain name system, andatliggihts management systems.

"Social Software”

The most obvious candidates for validating and refining tede» governance model would
be settings which are similar to the Internet Relay Chaerhet applications which serve as
a communication medium, allowing its participants to commate and interact with each
other, and thus build social groups. Recently, the termigd@oftware” has been proposed
for this kind of applicationy it is described as ”software that supports group inteoacti
Besides the IRC as one category, instant messaging andeénferums, blogs and wikis up
to social networking software, peer-to-peer networks andtiplayer online games are seen
as examples of "social software”.

Empirical analyses of such applications should give vdriaksights in how the «code»
is designed to cope with the social setting, and how and tawéxtent the participants and
stakeholders are taking part in govern their setting thinougode», thereby validating and
expanding the preliminary results found in this work. Sfie@ttention should be given to the
interaction between the social realm and the «code», as #msication might differ in their
social settings: For example, many online games or soctalarking sites have a corporate

1See for example "Social Software”, Wikipedia, 2005-08-&8(://en.wikipedia.org/wiki/Social_software).
2http://www.shirky.com/writings/group_enemy.html, acding to "Social software”, Wikipedia (2005-08-25).

186

11.1 Vvalidating and Refining the «Code» Governance model

backing which could influence the ways how the «code» is useddvernance issues, with
law and market regulation modalities influencing the sgthiasides «code» and social norms.

In this way, applications in the "social software” categprpvides a rich field for «code»
governance analyses, and help validating and refining tmsept.

Domain Name System

The debate around the organization and administrationsefrved identifiers in the Internet,
the domain name system (DNS) debate is another example winerecode» governance
concept should be applied to in order to prove its usefulness

The DNS debate has developed into what is seen as the majerngmce issue in the
Internet, so that the the term "Internet governance” hagsatiecome a synonym for the DNS
debate, the question abauto should contraihe distribution and management of identifiers in
the Internet. The diversity of the stakeholders, the staorgorate and governmental interests
involved, and and the current importance of the DNS for th@iegtions in the Internet makes
it an interesting case to apply the «code» governance cotmepdditionally, as outlined
above in the comparison between the IRC and the HM® current DNS systems shares
some technical similarities with the Internet Relay Chatjol could help applying results
found in this work to this much larger setting. In total, thepmlites around the domain name
system form a formidable challenge to the «code» governaoreept, promising valuable
insights into this hotly debated issue.

Digital Rights Management

Another important debate concerns the question of "prgpenmd "control” in the digital
realm, usually labeled as "intellectual property” or "dajicopyright” issues. Particularly
interesting in this field is the specific use of the technoloyigital rights management”
(DRM) systems are an example where content holders imprént $pecific interests into the
technology, thereby trying to enforce what they hold thegitimate control over the dis-
tributed content. At the same time one encounters individfiarts to reshape these DRM
systems so that they serve their individual interests, oreslarger "public” interests. Finally,
governments strive to (re-)form the respective regulategimes (primarily via law) as to
accommodate these different interests.

As these technologies are highly intertwined as part of éigalland societal complex set-
tings, where all regulation modalities—Ilaw, market, sbo@rms, code—play an important
but varying part, the «code» governance approach coulddzbtaslarify how design and im-
plementation choices of DRMs affect the various stakehs|dd what interests and choices

3Chapter 8.1.

187

11 Outlook

are coded into technology. Such results might lead to réglalternatives, for example by
alternative «code» design for DRMs, or inform policy coesations leading to a better reg-
ulation. At the same time, applying the «code» governanceeito the DRM issue should
give insights into the power and limits of this model, andiletfine its methodological in-

struments.

11.2 Computer Science Implications from «Code»
Governance

Once a better understanding of the «code» governance modeatsaapplication to other
empirical settings has been developed, there are somecatiphs for the discipline of com-
puter science. If this model proves useful for grasping tramexities of techno-social set-
tings, then computer science should develop approachesabsiocial issues asdogenous
to software and systems desigaAdditionally, recent important techno-social reseandnf
computer science scholars using their core competencas gtat models such as «code»
governance promise valuable contributions from computiense towards better policies on
technology issues in society.

Recently, the U.S. National Science Foundation (NSF) laed@ new program titled "Sci-
ence of Design — Software-Intensive Systefnahich addresses the ongoing struggle of soft-
ware engineering and computer science with the complexegeas of reliable and systematic
system design. In an article in the Communications of the AGNe NSF authors claim that
"[clomputer science and engineering needs an intellelgttigbrous, analytical, teachable de-
sign process to ensure development of systems we all cawilk&®. They give examples for
guestions to be addressed, such as:

e "How might e-voting systems be designed [...] to protectlcights and personal pri-
vacy while minimizing political bias and security threats?

e "How might urban planning systems be designed to accourgdoial and cultural di-
versity, public decision making, and accessibility?”

The questions make clear that one of the predominant probtemand is to cope with the
complexity of the dynamic interdependencies between tiyeiasocial and societal contexts

4See Science of Design program solicitation at http://wveivgov/pubs/2004/nsf04552/nsf04552.htm (2005-
06-24).

SFreeman and Hart (2004).

Sibid.

’ibid., p.20.

188

11.2 Computer Science Implications from «Code» Governance

and the systems-to-be-designed. There is a need for testduial models adapted to the
specifics of the system design. Strangely though, such duwsion is not reflected by the
projects currently awarded under the NSF programmost none of them give considerations
to topics or theories outside the core computer sciencea@fhaase engineering reafn

The results of this work back my conviction that computeesce should systematically
incorporate the social context into the design processderaio to deal with the complexi-
ties of today’s systems. Any effort like the "science of d@Siresearch therefore should be
concerned with the social and societal components of thesgson the level of the design
and implementatioli. «code» governance constitutes one concept where theporedion
of social contexts into the design and implementation @ses to deal with socio-technical
complexities have been examined. This approach, if notbisg, shows that computer sci-
ence and software engineering need to proactively dealtivtlsocial contexts in their own
discipline, instead of solely relying on other disciplifiesconcepts and theories.

The inclusion of techno-social contexts into the core ofdégign and implementation pro-
cesses could open up another important venue for the comgetignce research at large.
Recently, we can observe contributions from computer seiestholars which combine a
deep knowledge of the technical workings with models frorpamant new multidisciplinary
research areas, such as the new institutionalismstitutional economics$ or law & eco-
nomics3. Examples includes works on the impact of architecturaigiples of the Internet
such as the end-to-end on economic innovatficand various contributions to the research on
the open source phenomenran

Their competitive advantage compared to the works fromrotiigciplines lies in their

8The list of awards can be found via the NSF award search {hitpw.nsf.gov/awardsearch/), keyword "Sci-
ence of Design”. On 2005-09-04, the search returned thedswarmbered 0438970, 0438153, 0438923,
0438866, 0438931, 0438948, 0439017, 0438786.

9The exception is the "value-based science of design” (hitpw.nsf.gov/awardsearch/showAward.do?
AwardNumber=0438931, 2005-09-04), based on a "softwaoa@mics” approach of the principal inves-
tigators which appears to incorporate some economicsdlihseries; see also Boehm et al. (2001).

1°This is also suggested by the "value sensitive design” rebe@&riedman et al. (2003)) which draws its an-
cestorship from the long tradition of "computers and sgCie¢search, such as computer ethics, social in-
formatics, computer-supported cooperative work and g@petory design (ibid, pp. 2-3). Their difference
to the «code governance» concept lies in their approactmtakethe "value” proposition: They treat the
so called "values with ethical import” axogenouso the design process, presenting a list of values with a
"distinct claim on resources in the design process”. Priatgefthis appears to be a unnecessary limitation:
as «code governance» has shown, system participants fini@xsolutions for social conflicts which itself
formulates unique value sets (see for example the IRC "osimgt solutions in chapter 6). The «code gov-
ernance» opens up venues where such endogenous valuebeaidtected and offered as valuable policy
debate inputs from the technical perspective.

Hsee for example Ostrom (1990).

125ee for example Richter and Furubotn (1999).

3The seminal work in this area is Richard Posner, Economilysisaof law (1992, Boston: Little, Brown).

Yyan Schewick (2004)

15See for example Gehring and Lutterbeck (2004); Barwolfl g2005), Gehring (2005).

189

11 Outlook

unique perspective of an intimate understanding of thenieahworkings and computer sci-
ence concepts. This leads to better analyses and altenailicy suggestions for techno-
social quandaries than solely pursued through legal, enear political science scholarship.
The incorporation of a «code» governance understandinghetsystem design could further
help to foster such important computer science contribgtim the "internet governance”,
"information society” or other techno-social policy debsit
Itis to hope, that the example set by those computer sciemodesly works—and hopefully

by this thesis as well—will be more stringently pursued by tomputer science discipline,
for better techno-social systems designs, and a deeperstadéing of the complexities of
the information and communication technologies in society

190

Part 1V

Appendix

191

12 IRC Chronology

The analysis of the IRC «code» governance which | attemgt dews heavily on the changes
throughout the history of the IRC: | compare the differenftwsare versions over the time,

noting changes and interpret them as governance changiaaglithem to events as found in
textual documents on the IRC. It is therefore necessaryetrhla short history of the IRC to

give a timeline of events and introduce the different IRGuoeks.

12.1 1989 — The Birth of the Internet Relay Chat

The beginning of the Internet Relay Chat bears interestarglfels with the probably best
known open source software project, Linux. Like Linux, tR&€l has been initially conceived
and programmed by a Finnish student. And like Linux, the frestions of IRC has been
distributed over the Internet (USENET News), with othergde@etting interested and starting
to use and change the software, in addition to interconmecservers to form the first IRC
network. Today, like Linux, the IRC has grown to one of the eng@jrojects of its kind.

The IRC was created in the summer of 1988 by the Finnish stuldekko Oikarinen. At
that time, the Internet was not the ubiquitous communicatietwork that it is today. In the
corporate and academic world, networks like the Bitnet ()Bivid DECnet (Digital) existed
next to subscription-based like CompuServe; in additioerg were many private-run Bulletin
Board Systems, which were stand-alone servers to whicls usegmected directly through
telephone lines. Most BBS’s were usually not continouslyrexted to each other, but there
existed a technology called "store-and-forward" netwonktgere the server exchanged data by
calling each other at specified times of the day (mostly sigiot save phone charges); mainly
emails as well as Usenet news were transported through stweiorks.

Oikarinen had access to or knowledge of many such systemenetand a BBS called
"OuluBox" (which administered Oikarinen) which allowedk¢ime discussions (i.e, chats),
but did not feature a multi-group (or multi-channel) systdéssenet news, on the other hand,
Is a multi-group system, but is not a real-time system. Oélkamples were a Unix application
called "phone” (a real-time chat system between two usetdror systems), other examples
the Bitnet chat system as well as the DECnet "phone”.

In August 1988, Oikarinen created the Internet Relay Chat msilti-group real-time dis-

193

12 IRC Chronology

cussion system running on Unix systémser the Internet:

2) Did you come up with IRC just because you were frustratethbylimitations of talk, or were
there other reasons?
Kev

| believe that IRC came up because there was a clear need fomias not to replace talk.. the
purpose of talk is different. The original purpose of IRC waare like to provide similar features
that existed on BITNET and DECNET, ie. bitnet chat systemtaeddECNET phone.

At first it ran as single-server system on a host at the Uniyeos Oulu where Oikarinen
was employed. But soon he found friends in other finnish usities (Tampere, Helsinki)
who installed IRC servers connecting to his server, and so®@hRC became a multi-server
network with a number of Finnish servers. At one time, Oikan gave the software to some
people in the U.S., and after a while he got messages fromi@@op).S. universities who
successfully ran the IRC software. By interconnecting timmigh and the U.S. network, the
original IRC network (later dubbe@netfor "original" network) was born.

12.2 1989-1990 — Copyright, named channels and the
"great split"

After only one year (mid-1989) there were already about 4@ess in the O-net, but not many
users—in July 1990, per average only 12 users. But the coslewas constantly fixed and
refined, going through more than 10 versions. In 1989, Mic8aadrof also created the first
independent IRC client version, ircll, which for a long timenained the preferred IRC client
software of most users.

Copyright issues

The first important incident occurred with ircd version 2&p(il 1990), where the distribut-
ing person changed the copyright notice without knowledgd® other developers (includ-
ing Jarkko Oikarinen) to an non-existing "IRC Developmenn€ortium". As consequence,
Jarkko Oikarinen (the then copyright holder) released the version 2.4 under the Gnu Pub-
lic License (GPL), under which all subsequent ircd versiamsreleased

Named channels

The summer of the same year 1990 saw two further developmérits are important espe-
cially under the «code» governance aspects examined iwdnls First, with the server code

At that time, the majority of the hosts in the Internet wereming the Unix operating system.
2See also chapter 12.7

194

12.3 1990-1992 — Growth and Development

version 2.5 and 2.5+, a new kind of channel was introduced:nd&med channel. The de-
tails of this change were examined ab§uaut this change gave the normal user more power
in shaping the communication over the channels, and withoiternesponsibility, and more
conflicts.

The first "Great Split"

The second incident sheds some light on the IRC network neameagt and policy conflicts. It
is based on a year long dispute over how open the networkdheulegarding the acceptance
of new IRC servers, which culminated in the first forking oflR& network, called "the great
split**. It resulted in two different IRC networks with different lpes: The A-net (for An-
archy net) and the EFnet (for eris-free net, after the mawes®n A-net, eris.berkeley.edu).
Eventually though, the A-net vanished, while the EFnet iesthand today still forms one of
the largest IRC networks.

12.3 1990-1992 — Growth and Development

EFnet continued to grow, both in the number of users and serve

e 1991 already over a hundred servers are interconnected.

e 1991 gulf war brings live reports from the Iraq, boosting tisership first by the hun-
dreds, later in the thousands. In late 1994 around 5000, alg&s 15000, in 1997
30000, and so on. Nowadays the largest network around 5@Q@0Q000 users per
network.

e The continuous growth poses challenges on system stadildyfeature sets. This re-
sults in constant code development efforts: In July 19@P.& version is released. The
end of the same year brings the irc2.7 version. March 1998ybrihe irc2.8 version
with a large number of enhancements.

e In May 1993, the IRC client-server protocol (Oikarinen areeR, 1993) is approved by
the Internet Engineering Task Force, and therefore madieiafy’ an Internet protocol
(Request for comments, RFC).

3Chapter 4.3.
4See above chapter 8.2.

195

12 IRC Chronology

12.4 1993 — The first successful fork: Undernet

The Undernétemerged from the joining of three separate groups of whichstarted as a

test network. In the U.S., Daniel Mitchell ("Wildthang")asted a server in October 1992
where bots were tested. But apparently, friends also stéotese it to chat with each other,
and soon other servers joined this "friends-of-friendsvoet”. Around the same time, french
server administrator Laurent Demailly ("_dI") and P. Dudfap”) tested the new 2.8 server
with a small net. On the Canadian side, Donnie Lambert ("\&énid") had set up a server for
the EFnet, but got his link revoked. So, in December 1992 thea@ian server linked to the
french servers, and this Canadian-French net linked to tBe hetwork. Thus the Undernet
was formed.

12.5 1994 — Another fork; DALnet

Another case is the creation of DALnet. This is the initiatmf members of the channel
"#StarTrek" on EFnet, fans of the TV series "Star Trek". $amio the creation of the Un-
dernet, the DALnet founders were annoyed with the lackiabibty and user-friendliness of
the EFnet, and so some members formed a small network to wthehns connected to form
a new network. The main feature of this network are some seswvivhich introduced a kind
of nickname and channel ownership (NickServ, ChanSeas well as a service allowing to
leave messages for offline users (MemoServ).

The DALnet forked off the Undernet, and was named after itséter, a user named "dal-
venjah”. Their main hallmarks are the ChanServ and NickServices, next to many other
enhancements of the server code and the administrativeoenvent.

There are two subsequent server series: First the "dreggifgeries, later the "Bahamut”
series which still remains in active server developmentceRdy, in 2003, DALnet suffered
a number of severe attacks which brought the whole DALnetddheir future at that time
remained unclear.

12.6 1996 — IRCnet forks off EFnet

Similar to the split between Anet and EFhdRCnet resulted from another forking efforts. In
the case of the IRCnet, a dispute about the choice of a comstial technology against net
splits lead to the split of the IRCnet from the EFnet. Whanigiiesting here is that the split
went along ’cultural’ lines: Most of the U.S. server remairnia the EFnet, while the large

5The following derived from Mirashi and Brown (2003).
6See above chapter 6.3.1.
’See above chapter 8.2

196

12.7 The IRC Source Code Copyright

majority of the European servers formed the IRCnet. In thig $BCnet took the then newly
developed irc2.9 series with it, because the main maintéameAustralian) decided to go with
IRCnet. EFnet continued then with the comstud, +TH and layberies.

12.7 The IRC Source Code Copyright

Like most software of the main Internet applications, théveare underlying the IRC has
been open sourced from the beginning on, and the serveraefof the main IRC networks
has been kept under the GNU Public License (GPL) to this daye Hwill outline how the
IRC software came under the GPL, and what the main consegsiénicthe development and
use of the software are.

In the beginning of the IRC, the creator Jarkko Oikarinengstmple copyright into the
IRC softwaré. This named him and his employer, the Computing Center of/tiieersity of
Oulu, Finland, as copyright holder. The copyright noticeegpermission for free distribution
of the software, but limited the use to non-commercial pagso Furthermore, the license
gave no permission for the modification and distribution afdified versions. This notice
remained until version irc2.2 of December 1989. Then ardewi convinced Oikarinen to
change his mind about the copyright.

This incident happened with the version 2.3. The IRC sofwaas actively developed
by a changing group of people, and the IRC software underaepiick succession of main
versions and minor bug fixes and enhancements. Versior2ives quickly followed by two
patches (irc2.2PLO, irc2.2PL1), but "had a tendency to dystariously very ofter?. Thus
Markku Savela took over and released a number of enhancemamied irc2.2msa(x being
a number). At some point another coder, Chelsea Ashley Dgercontributed to the IRC
code. She and Savela began to work on the new version irchi8hwould consolidate the
changes that Savela (and others) made to the IRC serveesmae.

On 6 April 1990 at 10:58, Dyerman announced on the "operlist” mailing list the rekea
of the irc2.3 versioht. On the same day, at 19:27, Jarkko Oikarinen, the creatdreofRC,
sent a messageon “operlist” where he asks about some changes that obyiouesle made
by Dyerman. He noted that the copyright message in the scoehad been changed from

(c) 1988 University of Oulu, Computing Center

to

8[irc2.1.1/COPYRIGHT']

9[irc2.4/2.4.notes]

10All times converted to Central European Time (CET).

pyerman, Chelsea Ashley (1990-04-06)2.3. Mailing list IRClist (1990)

20ikarinen, Jarkko (1990-04-06)ew IRC version commentsMailing list IRClist (1990)

197

12 IRC Chronology

@(#) * Copyright (c) 1990 IRC Development Consortium.\n\
All rights reserved.\n
As it became clear quite fast, no such organization existed.

In addition, some files were changed but there was no infoomat the header of the file
informing of the changes. Only ten minutes later, Oikarihad found another major change
in the code, one that enabled all IRC operators to see aktsaod private channels:

I'm not sure (I'm not interested in trying the new irc rightw) but does the new server include
things which affect irc privacy ?

Like operators being able to see secret/private channels ?
I think I’'m going to quit using irc soon if that's tru€

Other people, including Markku Savela, commented or askedtahese changes, especially
the copyright changes. The answer followed promptly by bhaer, who made these copyright
changes, in an apology to Oikarinen:
| can’t not even begin to say how much of a real creep | am. | veag wrong in removing the
headers, and installing the new. | will not try and hide belercuses, and try and run from what

I have done. | would like to try and explain what the meanirgg this whole mess of mine is, if
you will take this time to read on*%

She explained the change as a kind of joke, since so manyilmatetl to the IRC code besides
Oikarinen. Also there was some kind of misunderstandingficoed by a message of Greg
Lindahl to Dyerman and forwarded by her to the operlist mgilist:

Please, Casie, don't be so perturbed at the latest irc flappé&rtially to blame for the copyright
affair; | am the person who contacted WiZ about it and onlyvehaead his email repi?

The problematic version irc2.3, released on April 6, 19985 wiade non-readable on the next
day'®. Server administrator continued to use the previous verdia, and Savela continued
with some more patches in the 2.2msa series.

This incident obviously convinced the copyright holderk&inen, to change the copyright
to the GNU Public Licence (GPL). Version 2.4, coordinatedMigrkku Savela and Chelsea
Ashley Dyerman, was the first IRC software version which wassynder the GPY’. Since
this time, all major IRC software versions carry the GPL tiice.

30ikarinen, Jarkko (1990-04-0F¥ivacy. Mailing list IRClist (1990)

pyerman, Chelsea Ashley (1990-04-@€) Mailing list IRClist (1990)

Forwarded message in Dyerman, Chelsea Ashley (1990-0th@8itest irc flap (fwd) Mailing list IRClist
(1990)

60ikarinen, Jarkko (1990-04-0Re: irc. Mailing list IRClist (1990)

17As an interesting side note, Markku Savela, which gave itambcontributions to the IRC software, decided
to quit contributing to the IRC because of the GPL: He intetgd the GPL in that he could not use his
own code which he contributed to the IRC in other (commey@edjects anymore, and thus: "If the above
interpretation is true, | cannot modify or contribute to gmpgram that has GNU copyleft. | must have the
option to use my code as | wish, even if | allow others the rightise it as they wish." (Savela, Markku
(1990-04-06Release 2.4 hassledRClist (1990)). But as is so often the case with open sourcgpts, his
place was taken over by other volunteer programmers.

198

13 Tools for the Examination of the
IRC Source Code

13.1 In Search of the Right Tool

At the time | realized that my hypothesis needed a in-depgioeation of the IRC source
code | already had read myself through much of the sourceioagaon-systematic way, and
with no other tools than what a regular Unix environment i&ffe¢ Nevertheless | ventured
to search what kind of source code analysis tools existethaw they could help me in this
specific kind of code examination.

To this behalf, | first initiated some searches in Google d@dACM website, and then
traced the resulting source code analysis tools, infoonatbout them, information which
could help me to find further pointers. | deemed this tasklimiswhen subsequent searches
only revealed the same tools and information without no resmlts.

Before | offer the results of this search though, | shoulccgpevhat | deemed necessary
features of such a tool. My starting point were over 200 segnxle packages of IRC server
versions, each of them consisting of between 20 and 140 s@ade files (among a total of
between 50 and 480 files) for the IRC server. The server idemrin the C programming
language, using BSD style libraries (e.g. socKetdjhat | needed was a tool which processed
these file to allow both examinations of one version (in otdamderstand how the server, or
a specific feature is implemented) and the differences letwgo or more versions (in order
to understand how a specific feature evolves over the time).

Especially the latter functionality was important for mejce the tracking of changes in
functions helps to understand their «code» governanceamte. So | will mostly concentrate
here on the search of tools allowing me to compare and analy&sion succession of C
source code.

As one final condition, | was restricted to find an either dosé- or reasonably priced solu-
tion. As we will see, this ruled out even the evaluation of sanmeresting sounding products,

IWhich by the way is a quite powerful set of tools, even in thedsaof an intermediate user such as myself.

2In early versions, there are file which provide an altermatinix System V library dependency instead of
the BSD one, but these efforts ceased to exist early on. Irrr@rduversion of the Undernet server code,
provisions for other operating system libraries (Linux,gdBSD, Solaris) are made.

199

13 Tools for the Examination of the IRC Source Code

because | had no access to them.
Specifically, | have looked int@ersion control systermendcross referencing tools

Version Control Systems
The first idea was to use one of the available version comysiesns. Such systems are used
in software projects to manage changes in files (source audiether files) where many de-
velopers may have writing access to. It automates traclanigions of a file, allows to define
version points (a snapshot of the project were the statel diled is fixed) and branching
(allowing concurrent versions of one software), and presitbols to manage collisions (mul-
tiple developers changing one file at the same time). Of theymrarsion control system in
existencé, | have checked "CVS”, the control version system

A definitive plus of such systems are the ability to define bhas. In the course of the IRC
server code development, there are all kinds of code branche

e The changes of the "b@%¥ersions branched off irc2.5.1. But after the last bu verdioe
new irc2.6 series was developed on basis of the irc2.5 samelsonly selected changes
of the "bu” branch were incorporated back into the irc2.6ecod

e Within the EFnet, at least two concurrently developed IR&exebranches emerged
from one version (irc2.8.21) which continue to coexist. Wline development is done
independently of each other, there are code parts whichdayged from the competing
branch and incorporated into their own code. Similar coraurversions exist also in
the Undernet (where different code series coexist), angljpnably in other networks as
well.

e Although the server software of different IRC networks ace¢ imteroperable, there
are many similarities resulting from a common code base @umet and IRCnet code
branched off EFnet versions; DALnet branched off Undereiet) as well as adoption
and incorporation of code innovations into the own softwéae it by recoding it, or
adapting existing code (verbatim code copying has been doaly).

While the branching feature would have been helpful, thele/lsgstem is geared towards
the coordination of source code for actual developmenteawsof an after-the-facts analysis.
Based on constraints in time and knowledge, | found that Cif&ead not enough support
for my needs, such as the preservation of time stamps wheorimg the packages (the IRC
server packages retain their time stamps, which is an impbmformation of when the file
has been last changed). Moreover, CVS did not offer easyostifgp visualization of tracking

3See for example "Revision control.” Wikipedia. 2005-04+tp://en.wikipedia.org/wiki/Revision_control.
4See http://www.cvs.org/
>"bu” stands for Boston University, students of which mainéal these versions.

200

13.1 In Search of the Right Tool

differences; the addition of such a feature would have rs#te¢sd to create another layer on
top of the CVS, making the efforts to bring the code packagesCVS too cumbersome.

Cross Reference Tools

Cross reference tools take a number of source code files (fadtveare package and generate
documentation files in various formats allowing to browsetigh the code. Often seen fea-
tures include an index of functions, variables, definitiansgl other code objects, and taking
specially formatted comments in the code to create an auézhagcumentation.

Existing tool$ not only differ by the features they offer, but also by the temof program-
ming languages supported. The most common uses for suchamhuto-generated source
code documentation, information gathering for debuggirag@sses, and to a certain extent
the exploration of the code structures of undocumentedceazode. Note that these tools do
not allow to compare software versions, but can only appbezhe version at a time.

The most promising tools appeared to be DoxygeAt the time of writing in version
1.4.2 (28 Mar 2005), | had evaluated versions 1.2.5 (Mardi@nd 1.3.8 (August 2004).
According to the manual, it is a "documentation system forC&, Java, Objective-C, IDL
(Corba and Microsoft flavors) and to some extent PHP, C#, dnafiering to "generate an
on-line documentation browser (in HTML) and/or an off-lireference manual (irfIeX)”,
and configure it to "extract the code structure from undoauex source files”. Most of
the features are geared towards documentation of actiesgldped source code, rather than
examining a given code package. But the documentationsadiisop support for such tasks by
creating "dependency graphs, inheritance diagrams, dfabooation diagrams”.

The output generated by Doxygen is impressive. Once | haaddfout the proper configu-
ration settings, it generated a thorough documentatioheoévailable source code, including

e a dependency graph for each file (which header files are iadiid

o for each define directive and function the definition, refiees to other objects, a list of
functions which reference this one, a call graph, and theceatode listing;

e for each data structure its field list (and graphical repregeon), and for each field the
definition and a list of functions referencing this field.

Interestingly though, upon trying to use this comprehanswtput, | found myself returning
to the 'low-tech’ variant of using the terminal and the Unioks (vi editor, ctags, as well as
string search tools, such as 'find’ or ‘grep’) to explore tbarge code. Both the speed as well
as flexibility of exploration of the code proved to be betternved with the terminal than the
Doxygen outptit

SFor a list of such tools, see for example http://www.doxy.gegylinks.html (2005-04-05).
http://www.doxygen.org/index.html. The following qustare from this page as of 5 Apr 2005.
8The fact that | am a rather fast touch typist might have beeémaortant factor here as well.

201

13 Tools for the Examination of the IRC Source Code

In conclusion, cross reference tools such as Doxygen offepdisticated way to examine
a source code package. But the quality of output is gearedrttsia static documentation,
rather than a dynamic exploration of the code. Thereforeh sunoss reference tools greatly
help to get an overview of a source code, which then can betodedther explore the code
with more dynamic tools. For my «code» governance purpdsasgh, the output did not
prove flexible enough to support me in 'wading’ through tharse code, so that | basically
fell back to using basic tools, such as editor and Unix tools.

Other Tools

There are a number of other tools which aid developers torstated code structures, such
as code visualization todlsor software slicing’. The IEEE Software Engineering Body of
Knowledge subsumes these tools under the category of "Sodtwiaintenance tools”, sub-
category "Comprehension toold” These tools are more geared towards helping in debug
and optimizing processes by offering views on the code wittereomplexity of the code is
reduced. Such tools appeared too large for my smaller némais the code complexity, the
IRC server code is only a small to medium sized project); oitazh, these topics are in active
research, where available tools are often just a proof ofept) rather than generally usable
software.

13.2 A Makeshift Solution

As none of the available tools appeared to have a viableteffsult ratio, | settled on a
makeshift 'solution’, using available Unix tools for theoggess. An mix of small python, awk
and shell scripts with a small C program interspersed takedlirectories (each containing
source code and other files of one software version) and gesesome HTML files (and
intermediate text files as well).

At the core, the corresponding file in each of the two dirgctoges is matched and com-
pared. If there are differences, then a HTML file is generatbech shows a side-by-side
comparison of each line of the files (generated by the GNU' 'difogram). In addition, a
overview file is generated in which for each file or file pairie two directory trees, a status
is given (for a file pair: ’identical’ or 'differ’, for singldiles: 'added’, removed’), together
with the (linked) position of the file.

As the file positions inside the directory tree has been obatigroughout the versions (by
creating new subdirectories, or simply renaming them, kangple), the scripts make some

9See for example http://www.cc.gatech.edu/classes/AYRBT 450 _fall/Talks/18-softvis.ppt (2005-02-15) for
a good overview of existing tools and research.
10F0r a list of projects, see for example http://www.infogmm.uni-passau.de/st/staff/krinke/slicing/node2.htm
(2005-04-05); a list of papers offers http://hissa.ndsi.gov/~jimmy/refs.html (2005-04-05).
EEE (2004, p.10-2)

202

13.3 The Analysis

attempts to locate the corresponding file. If no such file veamd, the file is tagged either
'added’ or removed’. If there was still a corresponding filleen | have manually generated
and examined the changes.

13.3 The Analysis

Although the actual exploration was not a linear processdestribe it here, one can never-
theless distinguish some steps of analysis that | went girou

The first step is to identify «code» governance-relevartsparthe software. As the topics
in Part Il show, there were plenty of alternatives from whiatould choose: functions and
commands surrounding channel issues, sanctioning merhanownership issues, checks
and balances, and network constitutional issues coulddzBlyadentified, and are important
governance topics even outside «code» related settings.

Once these functionalities were identified, | examined tttaa implementation in more
or less arbitrarily chosen single server version. For examyy tracking the processing of
a command through the functions in the code, | identified mby the general working of
that command, but all details such as options, conditiongsaumse, notification and logging
facilities etc. When comparing to the command documenidtifavailable at all), more than
once it turned out to be incomplete, or even wrong. So the egdmination proved the only
way to grasp the entire functionality of a command. This lohdource code exploration was
done without any tools other than an editor (vi), and thegstdunctionality*2.

The next step after understanding the functionality wagaokt changes throughout the
server versions. To this behalf, | generated the HTML filemnshg the file differences be-
tween versions for each adjacent version pair for all seceele versions that | had found
in the Internet. Now | could trace changes in the implemeémathrough the versions in
the side-by-side comparisons for the appropriate filekit@pfor governance changes in the
code.

In sum, my exploration into the IRC server source code wagdlaw-tech’, by using
standard Unix tools and some make-shift scripts which eceatH TML-ized file-by-file com-
parison of adjacent versions.

12The command ctags creates an index of code objects (suchet®ofs, variables, directives etc.) which then
can be used by editors (such as vi) to quickly locate thatabbfer example, when in the course of the code
examination a function call occurs, one can issue a vi conagiiraarder to go to the function definition. This
greatly helps to understand the sequence of processing sotlrce code.

203

13 Tools for the Examination of the IRC Source Code

204

14 List of IRC server source code
packages

This is a list of all IRC server source code packages thaté¢lcallected and examined for my
work. They are put under the heading of the network for whidytwere developed.

14.1 Onet

All versions are available from ftp://ftp.irc.org/pubipiirc/server/Old/ (2005-04-27)

Version Archive filename Release Date
irc2.1.1 irc2.1.1.tar.Z 1989-10-20
irc2.2PLO irc2.2.tar 1989-12-17
irc2.4 irc2.4.tar.Z 1990-05-10
irc2.4+ irc2.4+.tar.Z 1990-05-22
irc2.5 irc2.5.tar.Z 1990-07-07
irc2.5+ irc2.5+.tar.gz 1990-07-09

Table 14.1: Onet server versions

14.2 EFnet

14.2.1 Standard

The standard version goes from irc2.5.1 through irc2.8.21.
All versions are available from ftp://ftp.irc.org/pubipirc/server/Old/ (2005-04-27)

14.2.2 +CS

The main developer of this server code series was Chris Bsljcemstud).
Built on basis of irc2.8.21

205

14 List of IRC server source code packages

206

Version Archive filename Release Date

irc2.6pre19 irc2.6pre19.tar.Z 1991-03-08
Version Archive filename Release Date irc2.6pre19patched | irc2.6pre19.patched.tar.Z 1991-03-09
irc2.5.1 irc2.5.1.tgz 1990-09-06 irc2.6.1 irc2.6.1.tar.Z 1991-07-04
irc2.5.1bu8 diffs.2.5.1-to-bu.08 1990-10-22 irc2.6.2 irc2.6.2.tar.Z 1991-09-02
irc2.5.1bu9a diffs.2.5.1.bu.09a-to-bu.10 1990-11-12 irc2.6.2d irc2.6.2d.tar.Z 1991-11-06
irc2.5.1bu10 irc2.5.1.bu.10.tar.Z 1991-01-01 irc2.6.2f irc2.6.2f.tar.Z 1992-11-21

Table 14.2: EFnet server versions 2.5 and 2.6

Version Archive filename Release Date
Version Archive filename Release Date irc2.8 irc2.8.tar.Z 1993-03-28
irc2.7.1 irc2.7.1.tar.Z 1992-01-14 irc2.8.5 irc2.8.5.tar.Z 1993-04-20
irc2.7.1e irc2.7.1e.tar.Z 1992-03-15 irc2.8.6 irc2.8.6.tar.Z 1993-04-30
irc2.7.1e+4 irc2.7.1e+4.tar.Z 1992-04-08 irc2.8.7 irc2.8.7.tar.Z 1993-05-05
irc2.7.1e+10 irc2.7.1e+10.tar.Z 1992-04-28 irc2.8.9 irc2.8.9.tar.Z 1993-05-26
irc2.7.2 irc2.7.2.tar.Z 1992-05-14 irc2.8.10 irc2.8.10.tar.gz 1993-06-26
irc2.7.2c irc2.7.2c.tar.2 1992-05-22 irc2.8.12 irc2.8.12.tar.gz 1993-07-08
irc2.7.2e irc2.7.2e.tar.Z 1992-06-03 irc2.8.14 irc2.8.14.tar.gz 1993-09-14
irc2.7.2f irc2.7.2f.tar.Z 1992-06-16 irc2.8.15 irc2.8.15.tar.Z 1993-10-17
irc2.7.29 irc2.7.2g.tar.Z 1992-08-11 irc2.8.16 irc2.8.16.tar.gz 1993-11-09
irc2.7.2h irc2.7.2h.tar.Z 1993-03-24 irc2.8.20 irc2.8.20.tar.Z 1994-06-10
irc2.7.2i irc2.7.2h-i.patch 1993-04-02 irc2.8.21 irc2.8.21.tar.gz 1994-12-03

Table 14.3: EFnet server versions 2.7 and 2.8

14.3 Undernet

All versions are available from http://ftp.carnet.hr/pmisc/irc/ircd/CSr/ (2005-04-27)

Version Archive filename Release Date
irc2.8.21+CSr16 21+CSr15-r16.patch 1995-12-09
irc2.8.21+CSr17 21+CSr16-r17.patch 1995-12-02
irc2.8.21+CSr18 21+CSr17-r18.patch 1996-01-04
irc2.8.21+CSr19 21+CSr18-r19.patch 1996-01-05
irc2.8.21+CSr20 irc2.8.21+CSr20.tar.gz 1996-01-01
irc2.8.21+CSr21 21+CSr20-r21.patch 1996-04-04
irc2.8.21+CSr22 21+CSr21-r22.patch 1996-04-07
irc2.8.21+CSr23 21+CSr22-r23.patch 1996-05-09
irc2.8.21+CSr24 irc2.8.21+CSr24.tar.gz 1996-07-05
irc2.8.21+CSr25 irc2.8.21+CSr25.tar.gz 1996-09-05
irc2.8.21+CSr27 irc2.8.21+CSr27 .tar.gz 1996-11-02
irc2.8.21+CSr28 irc2.8.21+CSr28.tar.gz 1997-03-06
irc2.8.21+CSr29 irc2.8.21+CSr29.tar.gz 1997-03-08
irc2.8.21+CSr30 irc2.8.21+CSr30.tar.gz 1997-07-03
irc2.8.21+CSr30.5 irc2.8.21+CSr30.5.tar.gz 1997-07-04
irc2.8.21+CSr31pl2 | irc2.8.21+CSr31pl2.tar.gz 1998-09-05
irc2.8.21+CSr31pl4 | irc2.8.21+CSr31pl4.tar.gz 2000-05-07

Table 14.4: EFnet +CS (comstud) versions

14.2.3 +th and Hybrid

+TH: Developed by Taner Halicioglu. The TH series builds on ti8e geries, but it is unclear
on which specific version, but irc2.8.21 seems a viable chtdi the +th series is the

basis of the Hybrid series.

All versions are available from http://ftp.carnet.hr/pumissc/irc/ircd/th/ (2005-04-27)

HYBRID: The EFnet hybrid server series takes the ircd2.8/th.\&ad&dds "WHO, WHOWAS,

and IsMember() code from Comstud’s irc2.8.21CSr29." @ihybrid-2/README.hybrid]).

The main source of the code was: ftp://ftp.blackened.cabiipc/hybrid/old/ (2000-03-
22). with newer files also in ftp://ftp.ircdhelp.org/pubiw/ircd/ (2003-01-13).
All files are available from http://ftp.carnet.hr/pub/misc/ircd/hybrid/ (2005-04-27)

14.3 Undernet

2.8 VERSIONS The Undernet 2.8 versions all derived from their EFnet ¢exparts. As soon
as the EFnet released a new versions, the changes wereddand released as "'mu”

207

14 List of IRC server source code packages

Version Archive Filename Release Date
hybrid-2 ircd-hybrid-2.tar.gz 1997-04-02
hybrid-3 ircd-hybrid-3.tar.gz 1997-06-07
hybrid-4 ircd-hybrid-4.tar.gz 1997-07-01
hybrid-4.1 ircd-hybrid-4.1.tar.gz 1997-08-04
hybrid-4.2 ircd-hybrid-4.2.tar.gz 1997-08-04
hybrid-4.3 ircd-hybrid-4.3.tar.gz 1997-08-09
hybrid-5 ircd-hybrid-5.tar.gz 1997-09-06
hybrid-5.1b5 ircd-hybrid-5.1b5.tar.gz 1997-10-08
hybrid-5.2 ircd-hybrid-5.2.tar.gz 1998-04-04
hybrid-5.2p1 ircd-hybrid-5.2p1.tar.gz 1998-05-03
hybrid-5.3 ircd-hybrid-5.3.tar.gz 1998-06-03
hybrid-5.3p2 ircd-hybrid-5.3p2.tar.gz 1998-09-09
hybrid-5.3p3 ircd-hybrid-5.3p3.tar.gz 1998-11-03
hybrid-5.3p4 ircd-hybrid-5.3p4.tar.gz 1998-11-05
Version Archive filename Release Date hybrid-5.3p6 ircd-hybrid-5.3p6.tar.gz 1998-12-04
+th-5a.0 ircd+th-5a.0.tar.gz 1996-11-15 hybrid-5.3p7 ircd-hybrid-5.3p7.tar.gz 1999-06-02
+th-5a.1 ircd+th-5a.1.tar.gz 1996-11-22 ircd-hybrid-6.0 ircd-hybrid-6.0.tgz 2001-01-04
+th-5a.3a ircd+th-5a.3a.tar.gz 1997-02-28 ircd-hybrid-6.3 ircd-hybrid-6.3.tgz 2002-02-07
+th-6a ircd+th-6a.tar.gz 1997-07-22 ircd-hybrid-6.3.1 ircd-hybrid-6.3.1.tgz 2002-04-08

Table 14.5: EFnet server versions +th and HybridUnderngese&ersions u2.9 and u2.10

and "U” versions. "mu” and "U” differ slightly in their code.
Allversions are available from http://ftp.undernet.angex.php?dir=/servers/old-versions
(2005-04-27)

Version Archive filename Release Date
ircd2.8.14.mu ircd2.8.14.mu.tar.Z 1993-10-05
irc2.8.16.U2 irc2.8.16.U2.tar.gz 1994-02-08
irc2.8.16.mu irc2.8.16.mu.tar.gz 1994-03-04
irc2.8.19.U3.2 irc2.8.19.U3.2.tar.gz 1994-05-05
irc2.8.19.mu1 irc2.8.19.mu1.tar.gz 1994-06-00
irc2.8.20.U4 irc2.8.20.U4.tar.gz 1994-06-05
irc2.8.20.mu2 irc2.8.20.mu2.tar.gz 1994-06-06
irc2.8.20.mu3 irc2.8.20.mu3.tgz 1994-11-06
irc2.8.21.mu3.1 | irc2.8.20.mu3-21.mu3.1.patch.gz | 1995-01-03

Table 14.6: Undernet server versions 2.8

208

14.4 IRCnet

U2.9/u2.10 VERSIONS Beginning with u2.9, the code was developed independentiye
EFnet versions.
Allfiles butu2.10.11 are available from http://ftp.carhetpub/misc/irc/ircd/ircu/ (2005-
04-27). u2.10.11 is available from http://stargate.uksat/servers/ircnet/ (2005-04-

27).

Version Archive filename Release Date

ircu2.10.00 ircu2.10.00.tgz 1997-07-03

ircu2.10.02 ircu2.10.02.tgz 1998-03-05
Version Archive filename Release Date ircu2.10.03 ircu2.10.03.tgz 1998-04-08
ircu2.9.13.mu ircu2.9.13.mu.tgz 1994-11-01 ircu2.10.04 ircu2.10.04.tgz 1998-05-01
ircu2.9.13 ircu2.9.13.tgz 1994-11-01 ircu2.10.05.9 ircu2.10.05.9.tgz 1999-02-01
ircu2.9.19 ircu2.9.19.tgz 1995-03-08 ircu2.10.07 ircu2.10.07 .tar.gz 1999-11-06
ircu2.9.19.mu ircu2.9.19.mu.tgz 1995-03-08 ircu2.10.07.pl6 ircu2.10.07.pl6.tgz 2000-01-00
ircu2.9.20 ircu2.9.20.tgz 1995-04-05 ircu2.10.07.11 ircu2.10.07.11.tgz 2000-03-08
ircu2.9.20.mu ircu2.9.20.mu.tgz 1995-04-05 ircu2.10.08.01 ircu2.10.08.01.tar.gz 2000-05-07
irc2.8.21.mu3.2 | irc2.8.21.mu3.2.tgz 1995-05-03 ircu2.10.08.02 ircu2.10.08.02.tar.gz 2000-05-08
ircu2.9.21.mu ircu2.9.21.mu.tgz 1995-05-06 ircu2.10.08.03 ircu2.10.08.03.tar.gz 2000-05-09
ircu2.9.22 ircu2.9.22.tar.gz 1995-08-00 ircu2.10.10.pl5 ircu2.10.10.pl5.tgz 2000-04-01
ircu2.9.21.2 ircu2.9.21.2.mu.tgz 1995-09-07 ircu2.10.10.pl6 ircu2.10.10.pl6.tgz 2000-04-01
ircu2.9.30 ircu2.9.30.tgz 1996-03-05 ircu2.10.10 ircu2.10.10.tgz 2000-04-04
ircu2.9.31 ircu2.9.31.tgz 1996-06-08 ircu2.10.10pl20 | ircu2.10.10pl20.tgz 2002-03-08
ircu2.9.32 ircu2.9.32.tgz 1996-08-00 ircu2.10.11 ircu2.10.11.tgz 2002-05-05

Table 14.7: Undernet server versions u2.9 and u2.10

14.4 IRCnet

2.9 VERSIONS Technically, the versions 2.9 to 2.9.2 were developedeviRICnet was still
part of the EFnet. But since the main developer of the 2.@séeiit EFnet to continue
to maintain the irc2.9 version, these first 2.9 versionsrackided here as well.

All versions are available from ftp://ftp.irc.org/pubipirc/server/Old/ (2005-04-27)

2.10 VERSIONS All versions are available from ftp://ftp.irc.org/pulp/irc/server/ (2005-
04-27)

209

14 List of IRC server source code packages

210

Version Archive filename Release Date
ircu2.10.00 ircu2.10.00.tgz 1997-07-03
ircu2.10.02 ircu2.10.02.tgz 1998-03-05
ircu2.10.03 ircu2.10.03.tgz 1998-04-08
ircu2.10.04 ircu2.10.04.tgz 1998-05-01
ircu2.10.05.9 ircu2.10.05.9.tgz 1999-02-01
ircu2.10.07 ircu2.10.07.tar.gz 1999-11-06
ircu2.10.07.pl6 ircu2.10.07.pl6.tgz 2000-01-00
ircu2.10.07.11 ircu2.10.07.11.tgz 2000-03-08 Version Archive filename Release Date
ircu2.10.08.01 ircu2.10.08.01.tar.gz 2000-05-07 irc2.10.0 irc2.10.0.tgz 1998-09-07
ircu2.10.08.02 ircu2.10.08.02.tar.gz 2000-05-08 irc2.10.0p1 irc2.10.0p1.tgz 1998-09-07
ircu2.10.08.03 ircu2.10.08.03.tar.gz 2000-05-09 irc2.10.0p3 irc2.10.0p3.tgz 1998-10-09
ircu2.10.10.plS ircu2.10.10.pl5.tgz 2000-04-01 irc2.10.0p4 irc2.10.0p4.tgz 1998-10-01
ircu2.10.10.pl6 ircu2.10.10.pl6.tgz 2000-04-01 irc2.10.0p5 irc2.10.0p5.tgz 1998-10-08
ircu2.10.10 ircu2.10.10.tgz 2000-04-04 irc2.10.1 irc2.10.1.tgz 1998-11-02
ircu2.10.10pl20 | ircu2.10.10pl20.tgz 2002-03-08 irc2.10.2 irc2.10.2.tar.gz 1999-01-09
ircu2.10.11 ircu2.10.11.tgz 2002-05-05 irc2.10.3 irc2.10.3.tar.gz 1999-08-03

Table 14.8: EFnet server versions 2.7 and 2.8

Bibliography

Barwolff, M., Gehring, R., and Lutterbeck, B. (200®)pen Source Jahrbuch 2005ehmanns
Media.

Bell, T. W. (2000). Pornography, Privacy, and Digital Seip. Public Law and Legal Theory
Working Paper 17, University of San Diego, School of Law.

Benkler, Y. (2000). From Consumers to Users: Shifting thefi2e Structures of Regulation
Toward Sustainable Commons and User Accdssderal Communications Law Journal
52(3):561-579.

Bitnet-Relay (1986). Bitnet Relay User Guide. Correctivaiéns — Relay Operator Respon-
sibilities 8/21/86, http://web.inter.nl.net/usersdhelay/reluse.html, 2004-12-16.

Boehm, B., Port, D., and Sullivan, K. (2001). Value Based t8afe En-
gineering, http://lwww.nitrd.gov/subcommittee/sdp/aarbilt/position_papers/
barry _boehm_value based_software.pdf, 2005-09-04.

Brinton, A. (1997). IRC Operators Guide, http://efnet/dars/opersguide, 2002-12-22.

Brown, S. (2003). history.txt [Undernet history, 1993-30http://pfft.net/stacy/history.txt,
2003-02-26.

Commission-on Global-Governance, . (199%)ur Global Neighborhood United Nations
Commission On Global Governance.

DALnet (2003). So you think you want to be a DALnet IRC OPerato
http://help.dal.net/dnh/oper.php, 2003-06-13.

Ellickson, R. C. (1991). Order without Law. How Neighbors Settle DisputeSambridge
(MA), London (UK): Harvard University Press.

Freeman, P. and Hart, D. (2004). A Science of Design for Softwintensive System&om-
munications of the ACM47(8):19-21.

211

Bibliography

Frey, B. S. and Eichenberger, R. (2000). A Proposal for aiBleXurope. Technical report,
Institute for Empirical Research in Economics, UniversityZurich.

Friedman, B., Kahn, P. H., and Borning, A. (2003). Value SemsDesign: Theory and
Methods, http://www.ischool.washington.edu/vsd/\Vsédetry-methods-draft-june2003.pdf,
2003-06-11.

Frischmann, B. M. (2003). The Prospect of Reconciling méérand Cyberspaceloyola
University Chicago Law JournaB5:205-234.

Froomkin, M. (2000). Wrong Turn in Cyberspace: Using ICANNRoute Around the APA
and the Constitution, http://personal.law.miami.edadmkin/articles/icann.pdf, 2002-01-
19.

Gehring, R. (2005). The Institutionalization of Open Saur¢to appear in: Poiesis und
Praxis).

Gehring, R. and Lutterbeck, B. (2004)pen Source Jahrbuch 200Behmanns Media.

Gilmore, J. (1991). Privacy, Technology, and the Open Sgcie
http://www.toad.com/gnu/cfp.talk.txt, 2005-04-19.

Goldsmith, J. (1998). Regulation of the Internet: ThreesB&nt Fallacies.Chicago Kent
Law Review73(4):1119-1131.

Grewlich, K. W. (1999). Conflict and good Governance in "Qg@pace", http://www.mpp-
rdg.mpg.de/pdf_dat/grewlich.pdf, 2001-11-26.

Hadfield, G. K. (2000). Priviatizing Commercial Law: Lesscinom the Middle and the
Digital Ages, http://ssrn.com/abstract=220252, 200605

Hardy, T. (1994). The Proper Legal Regime for "Cyberspat#iiversity of Pittsburgh Law
Review 55:933-1055.

IEEE (2004). SWEBOK - Guide to the Software Engineering BamfyKnowledge,
http://www.swebok.org/ironman/pdf/Swebok_Ironmamew3 %202004.pdf, 2004-07-
15.

irc fag (1995). IRC Frequently Asked Questions, Versior81Htp:/ftp.irc.org/irc/docs/FAQ,
2002-08-22.

IRClist (1990). Irclist-operlist mailing list April 19904ay 1990 (discussion about irc-
2.3), ftp:/Imetalab.unc.edu/pub/academic/commurooatpapers/irc/lists/irc-2.3.Z, 2000-
03-24.

212

Bibliography

IRClist (1991). Irclist-operlist mailing list March 199Gevember 1991,
ftp://metalab.unc.edu/pub/academic/communicatiapeps/irc/lists/irclist-operlist.Z,
2000-03-24.

Johnson, D. R. and Post, D. G. (1996a). And How Shall the Né&s&e&=rned? A Meditation
on the Relative Virtues of Decentralized, Emergent Lawp:Httww.cli.org/emdraft.html,
2000-09-19.

Johnson, D. R. and Post, D. G. (1996b). Law and Borders — Tée &tiLaw in Cyberspace.
Stanford Law Reviewt8:1367.

Johnston, D., Handa, S., and Morgan, C. (19@4)berlaw Toronto: Stoddart.

Kalt, C. (2000a). Internet Relay Chat: Architecture (RFQA@B8 Request for Comments
(RFC) 2810, Internet Engineering Task Force, Network WaogKsroup.

Kalt, C. (2000b). Internet Relay Chat: Channel ManagemRt3 2811). Request for Com-
ments (RFC) 2811, Internet Engineering Task Force, NetwWokking Group.

Kalt, C. (2000c). Internet Relay Chat: Client Protocol (RE€12). Request for Comments
(RFC) 2812, Internet Engineering Task Force, Network WaogKsroup.

Kalt, C. (2000d). Internet Relay Chat: Server Protocol (RE13). Request for Comments
(RFC) 2813, Internet Engineering Task Force, Network Waogksroup.

Katyal, N. K. (2003). Digital Architecture as Crime Controtale Law Journgl111:2261—
2291.

Kesan, J. P. and Shah, R. C. (2002). Shaping Code. TechnrégadrR2-18, University of
lllinois College of Law.

Kesan, J. P. and Shah, R. C. (2003a). Incorporating So@etaterns into Communication
TechnologieslEEE Technology and Society MagaziSeimmer:28—-33.

Kesan, J. P. and Shah, R. C. (2003b). Manipulating the GaneeCharacteristics of Code.
Research Paper 03-18, lllinois Public Law and Legal Theaydrch.

Kesan, J. P. and Shah, R. C. (2004). Deconstructing CodeaR#sPaper 04-22, University
of lllinois College of Law.

Kzoo and LadyDana (2001). Managing Annoyances on IRC. darsil.0.0,
http://docs.dal.net/docs/annoy.html, 2002-12-20.

213

Bibliography

Lawrie, M. (2005). Brief history of the #gb channel, httpkhet.com/gb/gb-lorry.html, 2005-
01-20.

Lemley, M. A. (1998). The Law and Economics of Internet Norn&hicago-Kent Review
73:1257-1294.

Lessig, L. (1998). The New Chicago Schodlhe Journal of Legal StudieXXVII(2):661—
691.

Lessig, L. (1999a)Code and other Laws of Cyberspadzasic Book.

Lessig, L. (1999b). The Law of the Horse: What Cyberlaw Midgktch. Harvard Law
Review 113(2):501-549.

Lessig, L. (1999c). Open Code and Open Societies: Valuestefiet Governance,
http://www.lessig.org/content/articles/works/finalt i2004-08-24.

Lessig, L. (2001)The Future of Ideas. The Fate of the Commons in a Connecteld \Waew
York: Random House.

MacNeil, M. (1999). Cyberspace Governance: Canadian Risftes;
http://www.admissions.carleton.ca/ mmacneil/118/1868t-macneil-cyber.htm, 2001-
02-04.

McTaggart, C. (1999). Governance Of The Internet’s Infragtire: Network Policy For The
Global Public Network. Master’s thesis, Faculty of Law, ity of Toronto, Canada.

Mirashi, M. and Brown, S. (2003). The History of the Undernéttp://www.user-
com.undernet.org/documents/uhistory.txt, 2003-02-26.

Oberding, J. M. and Norderhaug, T. (1996). A Separate Jatisd For Cyberspace3ournal
of Computer Mediated Communicatid&(1).

Oikarinen, J. and Reed, D. (1993). Internet Relay Chat PobtgRFC 1459). Request for
Comments (RFC) 1459, Internet Engineering Task Force, diétWorking Group.

Operlist (1992). Operlist mailing list September 19914y 1992,
ftp://metalab.unc.edu/pub/academic/communicatiapps/irc/lists/irclist-operlist.Z,
2000-03-23.

Operlist (1993). Operlist mailing list July 1992-February1993,
ftp://metalab.unc.edu/pub/academic/communicatiapps/irc/lists/operlist-archive-
12Feb93.Z, 2000-03-24.

214

Bibliography

operlist (1993). Operlist mailing list November 1992-Marc 1993,
ftp://metalab.unc.edu/pub/academic/communicatiapps/irc/lists/operlist-archive-
31Mar93.Z, 2000-03-24.

Ostrom, E. (1990). Governing the Commons. The Evolution of Institutions folle€dtive
Action Cambridge (UK), New York, Melbourne, Madrid: Cambridgeitsrsity Press.

Padlipsky, M. (1982). A Perspective on the ARPANET Refeeeliodel. Request for Com-
ments (RFC) 871, Internet Engineering Task Force.

Paulsen, V. and Fleckenstein, U. (1997). No Script FAQ: \Wafcripts IRC schaden [ger-
manl], http://orgwis.gmd.de/IRC/NoScript.html, 2003-02

Perlman, R. (2000)interconnections, Second Edition. Bridges, Routers,ches, and Inter-
networking ProtocolsReading (MA): Addison Wesley, 2nd edition edition.

Pioch, N. (1993). A Short IRC Primer, http://www.irc.orgks/primer.txt, 2002-08-22.

PJKevin and Dalila (2004). DALnet History. Version 1.1.0,
http://docs.dal.net/docs/history.html, 2005-01-25.

PJKevin and LadyDana (2004). NickServ Options. Version .2].1
http://docs.dal.net/docs/nickserv.html, 2005-01-06.

PJKevin and Mystro (2004). ChanServ Information. Version.1.4,
http://docs.dal.net/docs/chanserv.html, 2004-12-04.

PJKevin and quen (2004). Controlling access to your chaniersion 1.1.2,
http://docs.dal.net/docs/csaccess.html, 2004-08-10.

Radin, M. J. and Wagner, P. (1999). The Myth of Private OrdgrRediscovering Legal
Realism in Cyberspace, http://ssrn.com/abstract=1622@8L-02-16.Chicago-Kent Law
Review (forthcoming 1999)

Reed, D. P., Saltzer, J. H., and Clark, D. D. (1998). Activewdeking and End-To-End
Arguments.IEEE Network 12(3):69—-71.

Reid, E. M. (1991).Electropolis: Communication and Community on InternetaiReChat
PhD thesis, University of Melbourne, Department of History

Reidenberg, J. R. (1998). Lex Informatica: The Formulatdrinformation Policy Rules
through TechnologyTexas Law Review 6(3):533-593.

215

Bibliography
Richter, R. and Furubotn, E. G. (1999Neue Institutionendkonomik (Institutions and Eco-
nomic Theory [german])Tubingen: J.C.B. Mohr.

Riedel (2001). EFnet Oper Guide, http://ftp.ircdhelp/baypdocs/hybrid7/operguide.txt,
2003-01-13.

Rollo, T. (1992). A Description of the DCC Protocol,
ftp://ircdhelp.org/helpdocs/misc/DCC.doc, 2004-01-13

Rose, H. and lan (1999). Early IRC history, http://www.ttr@ject.org/history.html, 1999-12-
17.

Rosenoer, J. (1997 yberLaw. The Law of the Interngtlew York etc.: Springer.

Saltzer, J., Reed, D., and Clark, D. (1984). End-to-End Argnts in System DesigriACM
Transactions on Computer Systera@l):277—-288.

Stenberg, D. (1998). History of IRC (Internet Relay Chat),
http://lwww.fts.frontec.se/ dast/irc/history.html, Z006-14.

Tanenbaum, A. (1989)Computer NetworksEnglewood Cliffs (NJ): Prentice-Hall, 2nd edi-
tion edition.

Undernet-CService (1997). Channel Service Frequently eAskQuestions,
http://cservice.undernet.org/Channel service/fad,i2600-05-20.

Undernet-CService (1998). The Undernet Channel Service uideBnes,
http://cservice.undernet.org/docs/guidelines.hti®d3206-04.

Undernet-CService (1999). X and w Commands List,
http://cservice.undernet.org/docs/xwcoms.html, 208€20.

Undernet-CService (2002). Channel Service Acceptable Us$wmlicy,
http://cservice.undernet.org/live/regproc/aup.pl@®5204-20.

Undernet-CService (2003). CService OpSchool: Usernantk Gimannel Registrations,
http://cservice.undernet.org/docs/opschooll.undgxbe2003-04-16.

Undernet-User-Committee (1996). Interview with Jarkkok&@inen, http://www.user-
com.undernet.org/promotions/jarkko.php, 2005-04-24.

Undernet-User-Committee (1997a). CTCP and DCC Protocol es@ans,
http://www.undernet.org/user-com/documents/ctcptrtp2003-06-04.

216

Bibliography

Undernet-User-Committee (1997b). Interview with Carlo dffp http://www.user-
com.undernet.org/promotions/carlo.php, 2005-04-24.

Undernet-User-Committee (2001). Undernet IRCop FAQ (fanNRCops), http://user-
com.undernet.org/documents/operfaq.txt, 2003-06-04.

Valauskas (1996). Lex Networkia: Understanding the Iree@ommunityFirst Monday (4).

van Schewick, B. (2004 Architecture and Innovation. The Role of the End-to-Endufignts
in the Original Internet.PhD thesis, Technical University, Berlin.

Wu, T. (1999). Application v. Internet — An Introduction tgpplication-Centered Internet
Analysis. Virginia Law Review85(6):1163—-1204.

217

