
Code Governance

«Code» as Regulation in a Self-governed Internet Applicati on
from a Computer Science Perspective

vorgelegt von Diplom-Informatiker Kei Ishii

von der Fakutät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurswissenschaften
– Dr. Ing. –

genehmigte Dissertation

Promotionsausschuss:
Vorsitzender: Prof. Dr. Bernd Mahr
Berichter: Prof. Dr. Bernd Lutterbeck
Berichter: Prof. Dr. Hans-Ulrich Heiß

Tag der wissenschaftlichen Aussprache: 7. Juli 2005

Berlin 2005
D 83

Contents

Main Hypotheses 15

Introduction 17

I Internet, Governance, and «Code» 21

1 Internet Governance and «Code» 23

1.1 Internet Governance .. 23

1.2 ”And How Shall the ’Net Be Governed”? 23

1.3 Governance . 25

1.4 «Code» as Regulation Modality .. . 26

2 «Code» Governance: An Empirical Analysis 29

2.1 The Choice of the Object of Analysis 29

2.2 Main Hypothesis . 30

2.3 Two Models of Regulation .30

2.3.1 ”Lex Informatica”: Key Aspects of a Regulation System. 31

2.3.2 Types of Rules . 33

2.4 Technical Notes on the Analysis 34

II Empirical Analysis of the Internet Relay Chat 37

3 The Internet Relay Chat 39

3.1 The Functional Perspective – Using the IRC 40

3.1.1 A hypothetical user scenario .. 40

3.1.1.1 Channels . 41

3.1.1.2 Private Messages . 42

3.1.1.3 CTCP (Client-to-Client Protocol)43

3.1.1.4 IRC Commands . 43

3

Contents

3.1.2 Size and Growth of the IRC . 44

3.2 A Conceptual View of the Technology of IRC 46

3.2.1 ”Polity”: Structural Overview of the IRC 46

3.2.1.1 IRC Server . 47

3.2.1.2 IRC Client . 47

3.2.1.3 IRC User Bot . 48

3.2.1.4 IRC Service . 49

3.2.1.5 IRC Network . 50

3.2.2 ”Politics”: A Processual View of the IRC 52

3.2.2.1 The Client-server architecture52

3.2.2.2 Inside the IRC server process 53

3.2.3 ”Policy”: IRC Server Installation and Configuration 54

3.2.3.1 Installation of the IRC server 55

3.2.3.2 IRC server configuration 58

3.2.4 Technical environment and code distribution 59

3.3 Main Social Roles in the IRC .. 60

3.3.1 IRC administrator . 61

3.3.2 IRC Service administrator .61

3.3.3 Coder . 62

3.3.4 IRC user . 62

3.3.5 IRC operator . 63

3.3.6 Channel operator . 64

4 «Code» Governance in IRC Channels 65

4.1 Principal Channel Design .. . 66

4.2 Numbered Channels . 68

4.2.1 Functional Design . 69

4.2.2 Technical Implementation .70

4.2.3 The ”Maximum Users Per Channel” Channel Property 72

4.3 Named Channels - a Major Change in «Code» Governance 77

4.3.1 Names, modes, and the channel operator 77

4.3.2 «Code» Evolves – Further Changes in Channel Design 81

5 Sanctions in the IRC 87

5.1 The /kill Command – Immediate Sanction 88

5.1.1 Functionality and Implementation 88

5.1.2 Changes in the /kill command . 89

5.2 The K-Line – Entry Denial Sanctions 92

4

Contents

5.2.1 Functional description and technical implementation 92

5.2.2 Config lines complementing K-line sanctioning 94

5.3 Access to K-lines for IRC operators 97

5.3.1 First experiment – Undernet’s /kline and /addline commands 98

5.3.2 /kline and exceptions in the EFnet 100

5.4 Beyond /kills and K-lines .. . 101

5.4.1 Delegating sanctioning power – Channel modes, kicks and bans . . . 101

5.4.2 Non-Sanctioning «Code» Remedies 102

6 Nickname and Channel Ownership 109

6.1 Nicknames, Channel Names, and Early Ownership Policies. 110

6.1.1 Nicknames . 110

6.1.2 Channel names . 112

6.2 Policy Changes With Bots and Services 113

6.2.1 Channel Control with the Eggdrop user bot 113

6.2.2 The NickServ service bot . 116

6.3 IRC Channel Registration Services 118

6.3.1 Channel Registration in the DALnet: ChanServ Service. 119

6.3.1.1 Channel registration . 120

6.3.1.2 Channel management features 121

6.3.2 Channel Registration in the Undernet: The X/W Service. 123

6.3.2.1 Channel registration . 123

6.3.2.2 Channel management: The X and W channel service bots. 125

7 Controlling the Controllers? 129

7.1 IRC Operator – Power and Control .. 129

7.2 Nominating IRC operators and IRCop Netiquette 132

7.3 Notices and Logs . 135

7.3.1 Notices . 136

7.3.2 Logging . 140

7.4 The Undernet UWorld Service .. 140

7.4.1 About the UWorld Service . 141

7.4.2 Functionality . 142

7.4.2.1 UWorld commands . 143

7.4.2.2 UWorld automatic functions 146

7.4.3 UWorld User Access . 148

7.4.4 Control in UWorld: Information, Notices, and Logs 149

5

Contents

8 IRC Network Issues 155

8.1 «Code» Architecture Shapes the Social Constitution 155

8.1.1 IRC: Topology, Data Distribution and Technical Rationale 155

8.1.2 DNS: Topology, Data Distribution and Technical Rationale 158

8.1.3 Comparison between the IRC and DNS architectures 160

8.1.4 Architecture as Constitution .. . 161

8.2 The "Great Split": The Forking of Anet and EFnet 162

8.2.1 Open-server servers vs. closed-server servers 163

III Some Notes on the Concept of «Code» Governance 165

9 Lex Informatica Revisited 169

9.1 Framework . 169

9.2 Jurisdiction . 170

9.3 Content . 172

9.4 Source . 173

9.5 Customized Rules and Customization Processes 174

9.5.1 Rule customization on the «code» level 175

9.5.1.1 Source code access . 175

9.5.1.2 System access . 178

9.5.1.3 Interface access . 179

9.5.1.4 User access . 180

9.6 Primary Enforcement .181

10 Rule Types in «Code» 183

11 Outlook 185

11.1 Validating and Refining the «Code» Governance model 185

11.2 Computer Science Implications from «Code» Governance. 188

IV Appendix 191

12 IRC Chronology 193

12.1 1989 – The Birth of the Internet Relay Chat 193

12.2 1989-1990 – Copyright, named channels and the "great split" 194

12.3 1990-1992 – Growth and Development 195

12.4 1993 – The first successful fork: Undernet 196

6

Contents

12.5 1994 – Another fork: DALnet .. 196

12.6 1996 – IRCnet forks off EFnet .. . 196

12.7 The IRC Source Code Copyright .. . 197

13 Tools for the Examination of the IRC Source Code 199

13.1 In Search of the Right Tool .. . 199

13.2 A Makeshift Solution .. 202

13.3 The Analysis . 203

14 List of IRC server source code packages 205

14.1 Onet . 205

14.2 EFnet . 205

14.2.1 Standard . 205

14.2.2 +CS . 205

14.2.3 +th and Hybrid . 207

14.3 Undernet . 207

14.4 IRCnet . 209

Bibliography 211

7

Contents

8

List of Tables

2.1 Lex Informatica (Reidenberg, 1998, p.569) 31

3.1 Configuration lines in server version irc2.1.1 (Oct. 1989) 59

3.2 Social Roles in the IRC .61

4.1 Common commands in connection with IRC channels (Pioch,1993) 68

5.1 Changes in the/kill command code . 92

6.1 DALnet Channel Service Officials 122

6.2 X/W user levels . 125

7.1 IRC operator privileged commands 131

7.2 Notices sent to IRCops in irc server version irc2.1.1 138

7.3 Uworld commands and access level .. . 149

7.4 Uworld commands triggering notices 151

14.1 Onet server versions .. . 205

14.2 EFnet server versions 2.5 and 2.6 206

14.3 EFnet server versions 2.7 and 2.8 206

14.4 EFnet +CS (comstud) versions 207

14.5 EFnet server versions +th and HybridUndernet server versions u2.9 and u2.10 208

14.6 Undernet server versions 2.8 208

14.7 Undernet server versions u2.9 and u2.10 209

14.8 EFnet server versions 2.7 and 2.8 210

9

List of Tables

10

List of Figures

1.1 Four Regulation Modalities (Lessig, 1999a, p.88) 27

3.1 Initial messages when joining an IRC network (Undernet,on Jan 6, 2004) . . 41

3.2 Example conversation in the IRC channel ”#hottub” 42

3.3 Snapshot of a channel list in the Undernet 44

3.4 IRC growth from 1988 to late 1995 .. . 45

3.5 Elements of an IRC network .47

3.6 Tree topology . 50

3.7 Undernet network (around 1993). 51

3.8 Basic IRC client-server configuration 52

3.9 Model of the server process .. . 54

3.10 IRC server installation steps 55

4.1 IRC Timeline – Numbered Channels .. . 69

4.2 Linked list for channels .. . 71

5.1 Flood block with/ignore . 104

5.2 Flood block with/silence . 105

6.1 Steps to Set Up an Eggdrop Bot .114

8.1 Spanning tree topology .. 156

8.2 Tree topology as a ”tree” .. 159

8.3 Querying a Domain Name . 160

11

List of Figures

12

List of Algorithms

1 Thestruct Channel data structure (slightly simplified) 70

2 Channel limit check inm_channel() . 73

3 is_full() and UnLimChannel() functions 74

4 MAXUSERSPERCHANNEL directive . 74

5 Startup option (commented out) for maxusersperchannel 75

6 OPER_KILL directive . 91

7 LOCAL_KILLS_ONLY definition . 91

8 I-line . 94

9 ”Restrict” configuration line (R-line) 95

10 ”Dump” configuration line (D-line) . 97

11 DYNAMIC_CONF directive (activate /kline and /addline commands). 99

12 ”Exception” configuration line (E-line) 101

13 The /ignore command . 103

14 Eggdrop configuration lines (examples) 115

15 ”Operator” configuration line (O-line) 130

16 ”Quarantine” configuration line (Q-line) 163

13

List of Algorithms

14

Main Hypotheses

1. «Code», the technology itself, has been identified as a regulation modality next to law,

market and norms.

1. When «code» can be understood as regulation, then there must be distinct features which

are similar to other regulation systems and other distinct features which are unique to

«code»:

1. The analysis of the source code of an self-organized, self-governed Internet appli-

cation reveals distinct «code» features: Structures and changes in the source code

which achieve some regulator’s end. These features form the «code» regulation

system of the application, it’s «code» governance.

a) As a self-organized application, it is ensured that the participants of the application
themselves shape the source code, and thus are their own regulators.

b) The choice of a self-governed system let me neglect the impact that the law and

market modalities have on the setting.

c) An Internet application is positioned at the end of the Internet, directly between

the user and the lower layer technical infrastructure, as well as distinct and distin-

guishable from other applications.

15

Main Hypotheses

16

Introduction

The starting point of this work is the notion that the software and hardware underlying the

technically mediated communication and interaction – called «code» – constitutes a regulation

system, similar to but distinct from the legal system.

The Internet continues to change the ways that people interact with each other, with im-

pacts on all levels of their personal lifes, social groups and society at large. This leads to the

still unanswered question of how governance structures have to be changed in order to cope

with the various problems that these new settings create. Wealready evidence the ongoing

discussions in areas like copyright, privacy, or Internet commerce.

One constant in all these situations is the existence of the technology, as its effects and

impacts on society are the actual source of all discussions.Interestingly though, the very shape

of the technology – the hardware and software itself – has only recently been recognized as

important source of regulation in the sense that it shapes online activities by either constraining

or enabling its users. The concept of technology as regulating means has found attention in

the form of ”code is law”1, mainly among legal scholars. As a consequence, this concept is

only studied as far as «code» can be used to serve legal objectives and purposes.

In the light of another regulatory discourse around the topic of (Internet) ”governance”

though, narrowing «code» to a mere legal enforcing tool appears too limiting. The term gov-

ernance has made it possible to think about regulatory quandaries not in exclusively legal

terms, but to include social norms, market forces, and physical or technical architecture as

sources of regulation. From this perspective, the ”code is law” turns into ”code as a regulation

modality”, or ”code regulates”.

But what does it mean that ”code regulates”? It is the purposeof this work to evaluate the

concept of «code» as a regulation system. To this behalf, I take the legal system as ’model reg-

ulation system’ to empirically explore the key concepts of «code» in the context of an Internet

application. I have chosen an existing self-organized, self-governed Internet application, the

Internet Relay Chat, to understand how the participants usethe «code» to govern themselves,

and how the «code» in turn governs the setting.

The Internet Relay Chat (IRC) is one of the major applicationin the Internet, albeit not as

generally known as the world wide web, email or even file-sharing applications. Nevertheless,

1Lessig (1999a)

17

Introduction

hundreds of thousands of people use the IRC at any time of day,any day of the week. It

allows to ’chat’, to exchange short text messages in real time with other users inside so called

’channels’ (sometimes also referred to as ”chat rooms”).

The main feature for my analysis is that the IRC is a self-organized, self-governed appli-

cation. ”Self-organized” here means that the entire application structure, a network of IRC

servers, is run and maintained by volunteers without any overarching corporate or govern-

mental structure directing them. They cooperate to form an IRC network because and as long

as they choose to.

Equally, the software, started by one individual, is constantly maintained and extended by

volunteering individuals forming their own institutionalenvironment, again with no company

or governmental organization paying or directing them.

In the same venue, ”self-governed” means that the IRC participants themselves manage their

common affairs, resolve disputes, create and enforce theirown set of rules, with no legal or

market interests or interference. For the social order of the Internet Relay Chat, law or market

forces are not driving forces for its governance. Instead, alarge part of social order in the IRC

is determined by «code», the technology that constitutes the application. The «code» defines

what is possible in the IRC and what is not, it determines the possibilities and constraints of

all participants, from the simple user to IRC officials. Changes in the «code» might alter the

governance characteristics and the constraints and opportunities for the IRC participants.

At the core of my examination of the governance structures and dynamics of the Internet

Relay Chat lies the analysis of thesource codeof the IRC server, the determining application

component of an IRC network. By treating the source code as anregulatory expression of

the IRC principals, I hope to find distinct features which establish the «code» as a distinct

regulation modality, a notion that I call «code» governance.

* * *

This work is consists of three parts.

In the first part, I develop the notion of «code» as a regulation system, by outlining the

discussion which lead to this concept (”Internet Governance and «Code»”, chapter I), and

then present my hypothesis and agenda for the main part, the analysis of the Internet Relay

Chat (chapter 2).

This analysis proceeds in the six chapters of part II. Chapter 3 gives an introduction to the

Internet Relay Chat, including its use, its main technical components and main social roles of

the participants. Chapter 4 examines the main entity in the IRC, the channel. By working out

its main features and properties, and their changes over thesuccession of source code versions,

I show how this «code» defines the governance environment, implementing constraints and

opportunities for the users to shape the social order in channels.

18

Sanctions are a major mechanism in most social settings. Chapter 5 reviews the sanctioning

mechanisms as they are designed and implemented into code. Again, the development of these

tools show how the IRC copes with changing environments, such as its successive growth,

creating new governance challenges to be met with adequate regulation tools.

As in other Internet applications, the desire to ’own’ names, to hold them for a longer period

is prevalent in the Internet Relay Chat. Chapter 6 traces thedevelopment of adequate policies

and mechanisms to put them into «code», and enforce them.

The IRC employs officials – IRC operators – to manage the dailyaffairs of the servers

and networks, which may include applying sanctions to otherusers. Chapter 7 sketches the

norm rules guiding them, as well as «code» based mechanisms implemented to heighten the

transparency of their actions. Also explored is a «code»-based tool which give IRCops and

other users unprecedented power in one of the IRC networks.

Finally, chapter 8 joins two chapters dealing with network affairs: the first section examines

the relationship between architectural structure of an application like the IRC, and its gover-

nance impact on the social setting therein. The second section traces the succession of events

which led to the split up of an IRC network due to fundamental policy differences between the

principals.

Part III presents the results of the empirical explorations.

19

Introduction

20

Part I

Internet, Governance, and «Code»

21

1 Internet Governance and «Code»

The agenda that I have chosen for this work is to further the understanding of the «code» part in

the concept of «code is law» as popularized by the leading cyberspace law scholar, Lawrence

Lessig1. This concept is part of an ongoing discussion about the regulation and regulability

of the Internet. To understand this background of Lessig’s concept, a short overview of this

discussion is given.

1.1 Internet Governance

The growing use of the Internet from the beginning of the 1990s has spurred the existing

discussion and research of social and societal implications of information and communication

technologies. Many contributions continue to add to the ever growing body of research and

opinions on how these technologies could change everythingfrom the individuals’ daily life

to the foundations of society at large.

A considerable part of these discussions are concerned withregulativeissues: Topics like

copyright, privacy, content control and others are hotly disputed topics, and remain largely un-

solved, whereas other areas, for example commercial contracts, have found a modus vivendi,

supported by legal regulations and technical solutions.

In parallel to those specific policy issues, another ’meta’ issue has received growing atten-

tion: howandby whomis and should the Internet be regulated?

1.2 ”And How Shall the ’Net Be Governed”?

In early contributions (especially legal scholarly ones),regarding how the Internet should be

governed, the view prevailed that the Internet did not pose any new challenges to the existing

(legal) regulation regime; some even claimed that the Internet did not necessitate any changes

in the regulatory approaches at all2. This stood in contrast to a similarly extreme view of

technologists who deemed that legal regulations could always be circumvented by technology:

”The net treats censorship as damage and routes around it”3; and that they should not ’rule’
1For example in Lessig (1999a)
2See for example Lessig (1999b), referring to a speech by Judge Frank Easterbrook.
3This is attributed to John Gilmore; see his website at http://www.toad.com/gnu/, 29 Oct 2004.

23

1 Internet Governance and «Code»

the Internet:

That’s the kind of society I want to build. I want a guarantee –with physics and mathematics,not

with laws– that we can give ourselves real privacy of personal communications.4

These were the extreme ends of the discussion, which both hadtheir merits: There were

a number of issues which could be resolved by legal means, through court decisions, and

changes in statutory law. These developments usually are subsumed under the topic label

of cyberlaw5. Other issues became non-issues, because of the technical development. But

for many issues, such as copyright or the ”freedom to tinker”6, the tension between ”rule of

law” and technological advancements remains to this day witnessed in countless contributions,

newspapers, web pages or scholarly articles and books.

At some points, legal scholars began to consider the possibility of alternative regulative

means. An early contribution for example concluded that forsome issues, ”"bottom up" rule

making processes are also workable”7, for which he named ”unilateral self help, [...] con-

tracts, private associations [...] and the development of customs”8 as examples. Other scholars

observed that in the existing Internet, alternatives to legal regulations had already emerged9

which would challenge the notion of government (and thus law) as a ”bureaucratic single-

provider institution”10.

Especially influential (and highly controversial11) were the papers by David Johnson and

David Post12 who made a theoretical argument on why alternatives to legalregulation in the

Internet was not only possible, but should also be actively fostered:

”This new boundary defines a distinct Cyberspace that needs and can create new law and legal

institutions of its own. Territorially-based law-making and law-enforcing authorities find this new

environment deeply threatening. But established territorial authorities may yet learn to defer to

the self-regulatory efforts of Cyberspace participants who care most deeply about this new digital

trade in ideas, information, and services. Separated from doctrine tied to territorial jurisdictions,

new rules will emerge, in a variety of online spaces, to govern a wide range of new phenomena that

have no clear parallel in the non-virtual world. These new rules will play the role of law by defining

4Gilmore (1991), my emphasis, K.I.
5See for example Johnston et al. (1997); Rosenoer (1997).
6Edward Felten, http://www.freedom-to-tinker.com/
7Hardy (1994, p.1054)
8ibid.
9E.g. Valauskas (1996) (arguing that the Internet communities have created a "separate law of Cyberspace"

in form "cyber-etiquette protocols"); Oberding and Norderhaug (1996) (claiming that there is no need for a
separate jurisdiction in Cyberspace, because Internet communities and organizations like the Internet Engi-
neering Task Force (IETF) already provide regulatory norms).

10Hadfield (2000, p.2)
11See for example Goldsmith (1998) (contending that the Internet is anchored in real space, and thus can readily

regulated by national governments), Radin and Wagner (1999) (arguing that any self-governing Internet or
”anarcho-cyberlibertarianism” setting cannot exist without the backing of contract law)

12Johnson and Post (1996b,a)

24

1.3 Governance

legal personhood and property, resolving disputes, and crystallizing a collective conversation about

core values.”13

More and more legal scholars began to search for alternatives to a direct legal rule in the

Internet. Such novel concepts are often not confined to one topic area alone. In parallel to the

Internet specific discussions, consideration about regulatory alternatives to law were pursued

in other areas as well. For this, the term ”governance” emerged.

1.3 Governance

The termgovernance14 is used in as different contexts as international relations(global gover-

nance) and in corporate environments (corporate governance). Correspondingly, in the context

of the regulation of the Internet, the termInternet governancehad been established.

Common to all approaches subsumed under the label of governance is the recognition that

situations exist where the ”monopoly on coercive ordering and dispute resolution”15 held by

the legal system leads to unsatisfying regulatory solutions. Therefore the legal-centric per-

spective is given up in favor of a multi-actor, multi-regulatory approach which still includes

legal means, but not as a sole provider of regulation. Of the various definitions of the term

governance16, I found the one given by the United Nation Commission on Global Governance

most clarifying:

”Governance is the sum of the many ways individuals and institutions, public and private, manage

their common affairs. It is the continuing process through which conflicting or diverse interests

may be accommodated and cooperative action may be taken. It includes formal institutions and

regimes empowered to enforce compliance, as well as informal arrangements that people and

institutions either have agreed to or perceive to be their interest”17

This definition points to a number of important topics:

REGULATORS – The definition recognizes a broad range of possible policymakers, from in-

dividuals to institutional, and both public and private entities. And importantly, the

definition does not prescribe any relationship (hierarchical or not) between them.

13Johnson and Post (1996b)
14According to Grewlich (1999, p.250), the term governance came from corporate law.
15Hadfield (2000, p.3)
16See for example MacNeil (1999) (”Governance ranges from issues of how a sovereign governs its sub-

jects to how communities and institutions govern themselves to how individuals govern their daily lives.”);
McTaggart (1999) (”In this thesis, ”governance” is used to describe the people, institutions, rules, and
principles which made the Internet what it is and influence its evolution.”; followed by a short ety-
mology, its uses in corporate law, international relationsetc.); ”Governance.” Wikipedia. 2005-04-19
http://en.wikipedia.org/wiki/Governance. (”Although the term governance is often used synonymously with
the term government it tends rather to be used to describe theprocesses and systems by which a government
or governor operate.”)

17Commission-on Global-Governance (1995)

25

1 Internet Governance and «Code»

DYNAMIC PROCESS – Regulatory issues can shift due to changing conditions andenviron-

ments, or due to unforeseen effects of the regulation itself, especially in complex situa-

tions where many regulators instituting various regulatory means are involved.

REGULATORY MEANS – The kind of rules, institutions or regimes through which the com-

mon affairs are governed is not limited to the legal system, but encompasses various

other means.

Accordingly,Internetgovernance is concerned with the ways that multiple actors and institu-

tions in the Internet apply multiple regulatory means to manage their common affairs.

The governance definition serves as a first step in an interesting direction, poses more ques-

tion than it can answer, such as the relationship between theregulators, or – and thus we return

to Lessig’s concept of «code is law» – the question of what the”regulatory means” are.

1.4 «Code» as Regulation Modality

Lessig’s notion of «code is law» is based on a model in which heidentifies four distinct

regulatory means or ”modalities”18. One of these modalities in Cyberspace is «code».

Lessig actually develops this model independent of the Internet. He starts by asking: What

constrains individual behavior? He defines constraints as the ”constraining effects of some

action, or policy”19.

He then identifiesfour distinct kinds of constraints that limit individual behavior: Market,

law, (social) norms, and architecture (figure 1.1).

Basically,law denotes the threat of sanctions by the legal system,marketthe constraints put

up by the price or the (non-) availability in markets,(social) normsas constraints put up by

some ”community”, and finallyarchitectureas those constraints that physical objects, laws of

nature etc. might put up20.

The important modality which establishes the agenda of thiswork is hidden in the last one,

architecture. In his application of this model to Cyberspace, Lessig identifies this modality as

code:

”And finally, an analog for architecture regulates behaviorin cyberspace—code. The software and

hardware that make cyberspace what it is constitute a set of constraints on how you can behave.”21

18Lessig (1999a, pp.85-90); Lessig (1998, pp.662-4)
19Lemley (1998, p.662)
20In Lessig (1998, pp.667-70), gives a number of examples to illustrate these four constraints, providing exam-

ples from smoking to abortion.
21Lessig (1999a, p.89)

26

1.4 «Code» as Regulation Modality

Figure 1.1: Four Regulation Modalities (Lessig, 1999a, p.88)

«Code»

«Code», as used in this work, points to the hardware and software as regulation modality.

In order to distinguish this specific meaning from the code in”source code”, or the ”legal

code”, «code» in the meaning of a regulation modality will bewritten with quotation marks.

i

This point sets the stage for the explorations that I pursue in this work. What is a code modal-

ity? How does code constrains, with what consequences on thegovernance of a social setting?

And what does this mean for those who shape the code, programmer, software engineers, com-

puter scientists?

While in the legal scholarly debate this model is widely accepted22, they (understandably)

concentrate on the relationship of «code» and law, that is, how law can effectively employ

«code» to serve legal objectives, or again in Lessig’s terms,

”how law might be used to regulate the architectures of cyberspace so that the architectures of

cyberspace might better advance the ends of law—so that it might, that is, become more regula-

ble”23.

As computer scientist, this is not the direction I will take.My starting point is not the ”ends

of law”, but rather the technical side of the «code» modality, and the «code» side of Internet

governance.

22Of recent articles, see for example Katyal (2003), Kesan andShah (2004).
23Lessig (1998, p.676)

27

1 Internet Governance and «Code»

28

2 «Code» Governance: An Empirical

Analysis

2.1 The Choice of the Object of Analysis

In order to explore the notion of «code» as regulation modality from a computer science

perspective, I have chosen to empirically analyze aself-organized, self-governed application

in the Internet.

In order to explore such a novel conception like «code» as regulation modality, anempirical

analysis of an existing governance setting in the Internet seemed sensible; any theoretical

considerations would have afforded a deeper legal understanding (since regulation theory is

largely an area of legal scholarship).

The next problem arose with the choice of an appropriate setting. My starting point in tech-

nology afforded access to the technology itself, i.e. the source code of the Internet setting,

which excludes most commercial or corporate settings, and thus the market modality influ-

ences. Also, I excluded settings where the influence of law could not be neglected, again

due to my focus on the technical side of governance. Strong institutional influences by legal

objectives could veil otherwise visible «code» structures; there are studies which show the

institutional impact on the resulting technology1.

Since some kind of group is necessary for a governance situation to arise, this left (in

Lessig’s model) a setting where norms and «code» had to play an important role: a self-

governed application in the Internet. As a last criteria, I needed access to the source code, if

possible in different versions, of the application, in order to be able to trace «code» adjustment

to social changes. Therefore a setting where the source codeis developed by the participants,

a self-organized application was necessary.

Given these criteria, I found the ideal object of analysis inthe Internet Relay Chat(IRC).

This Internet application allows users to employ in real-time group discussions. Created 1989

by a Finnish student, it since then has grown to serve hundreds of thousands of user in many

IRC networks. It is

1Kesan and Shah (2003b)

29

2 «Code» Governance: An Empirical Analysis

SELF-ORGANIZED: These networks are run and maintained by volunteers, and large networks

also develop their own IRC software, which is available as source code.

SELF-GOVERNED: Users and maintainers are spread around the world, only connected through

the Internet so that the influence of law on the social order isnegligible. Also due to its

voluntary nature, no corporate organization exists, so that neither market nor (corporate)

law influence exist.

AN INTERNET APPLICATION: As an application in the Internet, the social setting is entirely

based on thesoftwareof the application. The IRC principals therefore develop and use

their software which makes it probable that governance structure in the source code can

be traced.

2.2 Main Hypothesis

The choice of the object of analysis already has set some parameters for my main hypothesis

pursued in this work.

Main hypothesis

The analysis of the source code of an self-organized, self-governed Internet application re-

veals distinct «code» features: structures and dynamics inthe technology which serve as

regulation system, similar to, but distinct from the legal system. These features form the

«code» governance of the application.

Specifically, I claim that there are discernible structuresin the «code» which do not serve

the immediate applications end – the real-time discussion between users – but are (also) gov-

ernance mechanisms, to help manage the participants their common affairs.

These affairs can include the stability of the network, bothtechnical and social (prevent

or resolve disputes), coordination and management betweenusers in the discussion groups,

securing contributions for the network etc. In addition to norms guiding the participants, the

«code» creates a regulatory environment, constitutes aregulation systemof the application.

In order to be able to discern these «code» features, I need some concept of what aregulation

systemis constituted of. For my methodological approach, I have chosen two model which

help me to pinpoint governance structures in the application code.

2.3 Two Models of Regulation

Recognizing regulative structures in «code» needs some idea of what regulation constitutes of.

To this behalf, I have chosen two legal scholarly concepts which elucidate some basic aspects

30

2.3 Two Models of Regulation

of regulation and regulation systems.

In the first model, the author explains the «code is law» notion by looking for key aspects of

the legal system in «code», or ”Lex Informatica”. These key aspects offer a framework for a

regulation system which I will further examine using the example of the Internet Relay Chat.

The second model is concerned with what kind of rules exist. The author distinguishes five

types of rules each serving different purposes in a regulation system: expressing substantive

objectives, or determine the amount for sanctions, etc. An identification of such rule types in

the IRC «code» is another strong indication for the existence of a «code» regulation system.

2.3.1 ”Lex Informatica”: Key Aspects of a Regulation System

Similar and in parallel to Lessig’s concept of «code is law»,Joel R. Reidenberg developed the

concept ofLex Informatica, suggesting that information policy notes are formulated through

technology2. The core of his article is a comparison of Lex Informatica with the ”key con-

cepts of a legal regime”3, such as contents, source of the regulation system, or its primary

enforcement. L e g a l R e g u l a t i o n L e x I n f o r m a t i c aF r a m e w o r k L a w A r c h i t e c t u r eJ u r i s d i c t i o n P h y s i c a l T e r r i t o r y N e t w o r kC o n t e n t S t a t u t o r y / C o u r tE x p r e s s i o n T e c h n i c a l C a p a b i l i t i e sC u s t o m a r y P r a c t i c eS o u r c e S t a t e T e c h n o l o g i s t sC u s t o m i z e d R u l e s C o n t r a c t C o n f i g u r a t i o nC u s t o m i z a t i o nP r o c e s s L o w C o s tM o d e r a t e c o s ts t a n d a r d f o r mH i g h c o s t n e g o t i a t i o n O f f I t h e I s h e l f c o n f i g u r a t i o nI n s t a l l a b l ec o n f i g u r a t i o nu s e r c h o i c eP r i m a r y E n f o r c e m e n t C o u r t A u t o m a t e d , S e l f I e x e c u t i o n
Table 2.1: Lex Informatica (Reidenberg, 1998, p.569)

These key concepts serve me as framework for my explorationsof the IRC «code» regula-

tion system. I therefore briefly introduce each of these concepts as outlined by Reidenberg4:

FRAMEWORK – This is the ”basic building block” of the respective regulation. Reidenberg

nameslaw as basic framework of the legal system, andarchitecture, rather ”architectural
2Reidenberg (1998)
3ibid., p.569.
4All citations from Reidenberg (1998, pp.569-573).

31

2 «Code» Governance: An Empirical Analysis

standards” as the framework of the Lex Informatica, becausethese standards ”define the

basic structure and defaults of information flows on a communications network”.

JURISDICTION – The scope of the respective regulation regime. In the legalsystem, laws are

generally limited by the physical territory. As equivalent, Reidenberg names ”network”

as the scope inside which the information rules are applicable, without any further spec-

ification.

CONTENT – This is how the ”substantive content” of the regime are expressed or derived

from. In the legal system, the ”statutory language, government interpretation, and court

decisions” form the main content. Reidenberg offers ”technical capabilities and custom-

ary practices” for the «code».

SOURCE – The source of the ”default rules”. In law, thestatewith its ”political-governance

process ordinarily establishes the substantive law of the land”. In Lex Informatica, it

is the ”technology developer and the social process by whichcustomary uses evolve”.

Reidenberg distinguishes between two sources: the ”technologists” create the ”technical

standards” and products, and the user ”adopts precise interpretations through practices”.

CUSTOMIZED RULES – In law, contractsare an instrument which gives the governed (per-

sons, organizations) a means to ”deviate from the law’s default rules and to customize

the relationship between the parties” (inside legal constraints). Reidenberg likens it to

theconfigurationof technology. And as in the legal realm, configuration is only possible

if the ”architectural standards support the deviations”.

CUSTOMIZATION PROCESS: In both regulation systems, there are several kinds of customiza-

tions which differ in the cost for the parties involved. Reidenberg claims that the pro-

cesses ”show a number of significant differences” between the two systems, but only

identifies a ”wider range of options” in Lex Informatica, compared to the legal system.

PRIMARY ENFORCEMENT – Here the two regulation systems differ considerably. While legal

rules have to be enforced by ”juridical authorities”, and violations have to be ”pursued

on an ex post basis before the courts”, Reidenberg sees the enforcement in Lex Infor-

matica as ”automated and self-executing”: The design can ”prevent actions from taking

place without the proper permissions or authority”, through mechanisms like cryptog-

raphy, passwords, etc. In contrast to law, this is an ”ex anteenforcement” implemented

in the capabilities of the technical system.

Taken together, this model serves as a good framework for theexploration of the IRC «code»

governance. In chapter 9 I return to this model and examine these key aspects in the light of

the results of my empirical analysis.

32

2.3 Two Models of Regulation

2.3.2 Types of Rules

While Reidenberg’s model enables me to analyze the general regulation system features, the

”types of rules” as suggested by Robert C. Ellickson5 provides a concept ofrules. In this case,

the comparison with the law does not help: Laws work by ”threat[ening] ex postsanction for

the violation of legal rights”6, is put down in writing, either as court decisions or statutory law,

and ”depends primarily on judicial authorities for rule enforcement”7. «Code» on the other

hand works differently: it is ’built-in’ into the technology one uses and, as Reidenberg puts

it, ”allows for automated and self-executing rule enforcement”8, as often not even as a visible

sanction, but invisibly preventing some actions9. Therefore some kind of abstraction from

these features was needed to understand how «code» specifically regulates.

Ellickson embeds the ”types of rules” into a larger context,integrating types of sanctions,

controllers and rules into a ”comprehensive system of social control”10, on top of an extensive

empirical analysis of the behavior and disputes between cattlers in Shasta County, California.

Seen from Lessig’s modality model, he examines the interplay between law and social norms.

For my analysis, I apply only this part of the larger model which gives me some under-

standing of the different forms that regulation can take. Ellickson distinguishes five types of

rules11:

SUBSTANTIVE RULES: These are rules which ”define what primary conduct [...] is to be

punished, rewarded, or left alone”, which in law would statea ”you shall not...” kind of

rule. One example in cyberspace would be the limitation of the number of members in

an AOL chat room to twenty-three12.

REMEDIAL RULES: These rules determine the ”nature and amount of the sanction”, in case

that a substantive rule has triggered one. In law, monetary fines, imprisonment would be

examples. In the case of the AOL chat room, the remedial rule might be a simple entry

rejection.

PROCEDURAL RULES: In order to apply sanctions, someone13 (a controller) has to decide if it

is applied or not. For this, the controller needs a basis uponwhich she can decide. Pro-

cedural rules determine ”how controllers are to obtain and weigh information” for their

sanctioning decision. Court rules (code of procedures) arean example for such rules.

5Ellickson (1991)
6Lessig (1999a, p.89); emphasis in original.
7Reidenberg (1998, p.572)
8ibid.
9Lessig (1998, pp.677-80) suggests here the distinction between ”objective” and subjective” constraints.

10Ellickson (1991, p.123)
11The following description including all quotes follow Ellickson (1991, 132-6).
12Lessig (1999a, 68-9)
13In «code», this also could be a ”something”, some technical routine.

33

2 «Code» Governance: An Empirical Analysis

The «code» equivalent might be monitoring systems, or AOL collecting information

about members and their activities inside the system14.

CONSTITUTIVE RULES: In addition to rules which affect the conduct of individuals, other

rules have to specify the conduct of the controllers. Constitutive rule ”govern the in-

ternal structures of controllers”. In law, the organizational structures of governmental

entities come to mind; Ellickson also gives the example of a constitutive norm, in which

controllers should build a ”continuing relationship” between themselves rather than act-

ing as ”loners”.

CONTROLLER-SELECTING RULES: Finally, these rules determine the ”division of social con-

trol labor among the various controllers”. This is most evident when considering the

above given definition of governance, where many kinds of controllers ”manage their

common affairs”15. Also, in most settings, the four regulation modalities aresomehow

coordinated, either explicitly or implicitly. One examplefor a controller-selecting rule

might be the predominance of law over other modalities, implicitly assumed by most

legal scholars16.

These five type will help me to identify candidates for «code»regulation in the source code

of the Internet Relay Chat, when they formulate substantiverules, determine some amount of

sanctions applied, or information for officials the help them in the sanctioning decision; and

«code» that structures the controllers organization, or coordinates between different kinds of

controllers.

2.4 Technical Notes on the Analysis

Before I proceed to the empirical analysis of the Internet Relay Chat, some technical remarks

regarding my strategy are due.

My main object of analysis is the source code of the Internet Relay Chat. The IRC con-

sists of many networks which, independent of each other, provide chat functionality over the

Internet. These networks in turn consist of IRC servers who relay the messages of the IRC

users between themselves. Therefore, the main technical component of an IRC network is the

server.

My explorations therefore rely mainly on the analysis of thesource code of the IRC servers.

Such server source code are only developed by a few of the larger networks. Of these, I have

14Lessig (1999a, p.69)
15See above on page 25
16See for example Lessig (1998, p.666): He sees the non-law modalities ”as eachsubjectto law [...], each itself

an object of law’s regulation” (emphasis in original).

34

2.4 Technical Notes on the Analysis

included those of four networks in my analysis: Onet, EFnet,Undernet, and IRCnet17. In the

case of the EFnet also, several server series exist which aredeveloped and used in parallel.

In total, I have found the source code for approximately 200 server versions. They are listed

in chapter 14 of the appendix. This server code was then examined for «code» related features,

in single server versions and through a succession of versions, in order to track changes such

as extension or addition of features, or their removal, and between different network versions,

comparing similar features with different design or implementation. These examinations were

largely done ’manually’, by reading the source code. Some technical help, especially for the

longitudinal analyses were applied. A short account of the tools used is presented in chapter 13

of the appendix.

In addition to the server code, the source code of two bots were examined as well: the

Eggdrop user bot18 and the Undernet UWorld service bot19. In both cases only one version

was examined.

Next to the source code, the second source of information of the IRC were various docu-

ments, both from the networks themselves as well as from other sources. This collection has

not be done in a systematic matter, but rather as continuing search for interesting information

related to governance structures and events which could be also traced in the source code.

The sources used are listed in the bibliography. A problem with these documents was that

they sometimes were updated, and older versions not available any more; others disappeared

entirely. I have tried to only use those which are still accessible; but all used documents are

on file with me.

Notation

Finally here are some technical remarks regarding this work.

DATE FORMAT – I have chosen here two formats: For a full date including theday, the format

follows the international standard date notation20, which is YYYY-MM-DD (four year

digits, two month digits, two day digits)21. When examining the source code and doc-

uments, the various date formats were a continuous source ofconfusion22, leading me

to use this notation. I have made one exception: when only month and year were nec-

essary, I chose to write the full month name, followed by the year (e.g., ”May 1995”).

This occurs mostly in connection with the server code packages. Here it is sometimes

17I have also examined features of a fourth network, DALnet. Unfortunately, only a few server versions were
available, so in this case my explorations rely solely on documents available on this network.

18see below chapter 6.2.1
19See below chapter 7.4
20ISO 8601 of the International Organization for Standardization (ISO)
21See http://www.cl.cam.ac.uk/~mgk25/iso-time.html.
22Although most of these sources were written in English, their authors came from many countries, so that all

kinds of date notations were used.

35

2 «Code» Governance: An Empirical Analysis

confusing to track the dates of the many versions, so in orderto somewhat alleviate this,

I chose to put the date into a slightly more readable format.

”A LGORITHM” – Direct quotes from the source code, when several lines long, are put into

a table-like structure called ”algorithm”. The word processing software used for this

work23 offered this functionality, together with an automatic generation of a ”table of

algorithms”, so that I made use of this feature24.

CODE QUOTES – Apart from the ”algorithms”, short quotes of source code aswell as other

text that appear verbatim in the IRC (commands, channel names, etc.) are set in the

typewriter font.

SOURCE CODE CITATIONS– The notation for quotes from the source code packages has the

following format: enclosed in square brackets, the name of the source code as listed

in appendix chapter 14, followed by the path to the file in thispackage and the file-

name, and optionally followed by a colon and the lines insidethe file. For example,

[irc2.8.21+CSr20/include/comstud.h:19-27] points to lines 19 to 27 of the file ”com-

stud.h” in the the folder ”include” of the source code package ”irc2.8.21+CSr20”.

23LYX 1.3.5, a front end word processing software for the LATEX typesetting system.
24The «code» constraint in this software was the difficulty, and my inability to change the name ”algorithm” into

something more appropriate. This would have necessitated adirect code change in both LYX and LATEX, a
task that I chose not to undertake for this feature.

36

Part II

Empirical Analysis of the Internet

Relay Chat

37

3 The Internet Relay Chat

In this Part II, I analyze the Internet Relay Chat, a self-organized and self-governed application

in the Internet. It may be not as widely known as the world wideweb, e-mail or file-sharing

applications; still it remains an important application inthe Internet, used by hundreds of

thousands of people at any time of day or night.

The Internet Relay Chat, or short IRC, offers its users a medium to exchange text messages

in real time, both within a group of people, or between singleusers. Group conversations take

place inside of so-calledchannels, of which literally thousands can exist in an IRC network,

and can be shaped by its users.

The whole application is maintained and developed by volunteers, with no overarching

corporate entity or other single organization behind them.Moreover, ”the” IRC encompasses

thousands of independentIRC networks, from small one-server ’networks’ to large ones made

up by up to 100 servers connected to each other. Each of these networks form their own social

setting, with administrators and their helpers managing the servers and network, and its users

interacting by using the IRC network, contributing in various ways to it, or causing disruptions

and conflicts which have to be remedied or resolved.

All these actions are mediated by the IRC «code», the IRC software, which is developed

by the participants themselves. «Code» offers them a powerful means to shape their own

governance environment, to manage their common affairs, and to cope with changing social

conditions. The main objective of this work is to examine this «code» in its relationship to

and interactions with the social setting of these IRC networks.

So what is the Internet Relay Chat? I have chosen to give an three-partite answer:

• Section 3.1 begins with a hypothetical scenario where the steps to become an IRC users

are outlined. Along the way, important concepts such asnicknamesandchannelsare in-

troduced. In addition, this section gives basic information about existing IRC networks,

such as size and growth.

• Section 3.2 provides thetechnical foundationof the IRC: the IRC network architecture

and the IRC server and IRC client as its main components, the protocols involved, as

well as the basic configuration settings of the software.

39

3 The Internet Relay Chat

• Although I mainly examine the technical structures and dynamics, it is important to

shed some light on the social side of the IRC to understand thegovernance situation.

Section 3.3 offers a first glimpse by outlining the main social roles: IRC administrator,

service administrator and coder; the IRC user, as well as IRCoperator and channel

operator.

This overview of the functional side, the technical structure and the social setting sets the

foundation for the examination of notable features and development with regard to the IRC

«code» governance in subsequent chapters.

3.1 The Functional Perspective – Using the IRC

3.1.1 A hypothetical user scenario

As a first introduction, I describe how a user connects to an IRC network, what basic functions

are available to her, and what she gets displayed on the screen. In addition to giving an

impression on how users experience the IRC, it gives me the opportunity to introduce some

basic concepts of the IRC, such as IRC client software, channels, IRC commands, etc.

There are basically four steps necessary to get involved into a chat conversation on the IRC:

1. installing the client software and choosing an IRC network and server; 2. connecting to that

server; and finally, 3. entering and using the IRC.

Installing IRC client software: The first step in using the IRC is to acquire and install the

IRC client software. This is an program similar to web browsers or e-mail programs, offering

a user interface to the IRC and handling all necessary connection procedures and data transfers

to the IRC servers. IRC clients exist for many computing platforms1, and with different feature

sets; some offer a text-only interface, while recent ones sport graphical user interfaces.

Choosing an IRC network: An IRC network is a set of interconnected servers which together

form an entity whose members can chat with each other. In order to connect to one of these

networks, one needs to find the connection information for one of its IRC servers; this is

similar to finding an URL for a website. Most IRC client programs come with a default list of

servers to which one can connect. Other sources exist which provide up-to-date information

about the IRC networks2. And not at least, many larger IRC networks maintain their own

websites where current connection information on servers can be looked up.

Connecting to the IRC: Once the IRC network and server has been chosen, the next step

involves the actual connection procedure. The first thing that a user might encounter is the

1For Windows systems, mIRC (http://www.mirc.com/) is said to be the most popular IRC client; for Macintosh,
Snak (http://www.snak.com/Snak.html) and Ircle (http://www.ircle.com/) are the most popular ones.

2Examples for such websites are http://irchelp.org/ and http://irc.netsplit.de/.

40

3.1 The Functional Perspective – Using the IRC

rejection of connection. Many IRC networks have specific policies regarding who may con-

nect, and from where. A common reason for these policies concerns the number of clients that

one server can concurrently accept. Especially in large networks, servers of one country may

decide to reject clients from other countries (based on the domain name of the client), so that

the users of the network are more evenly distributed betweenthe servers of the network.

Once a server accepts the connection request, the user has toidentify herself by choosing a

nickname. This is a pseudonym that every IRC user has to choose and is referred to inside the

network. This nickname has to be unique inside the network; if another user with the same

nickname already exists, the connecting user has to choose another nickname. Only when a

unique nickname has been found, the user is granted entry to the IRC network.

Using the IRC: Once entered, the IRC server immediately sends a number of text lines

which contain basic information about the network, the server, and any other information that

the server administrator deems important, such as pointersto help information, usage policies

etc. (figure 3.1).

*** Welcome to the UnderNet IRC Network, zyxwvu
*** global: File not found
*** If you have not already done so, please read the new user information with /HELP NEWUSER
*** Your host is Amsterdam.NL.EU.undernet.org, running version u2.10.11.07(pre3)
*** This server was created Mon Sep 13 2004 at 21: 09:54 CEST
*** Amsterdam.NL.EU.undernet.org u2.10.11.07(pre3) dioswkgx biklmnopstvr bklov
*** WHOX WALLCHOPS WALLVOICES USERIP CPRIVMSG CNOTICE SILENCE=15 MODES=6 MAX-
CHANNELS=10 MAXBANS=45
+NICKLEN=12 MAXNICKLEN=15 are supported by this server
*** TOPICLEN=160 AWAYLEN=160 KICKLEN=160 CHANTYPES=#& PREFIX=(ov)@+ CHAN-
MODES=b,k,l,imnpstr
+CASEMAPPING=rfc1459 NETWORK=UnderNet are supported by this server
*** There are 56028 users and 81380 invisible on 35 servers
*** 100 operator(s) online
*** 459 unknown connection(s)
*** 49991 channels formed
*** I have 5009 clients and 1 servers
*** Highest connection count: 5026 (5025 clients)
*** - Amsterdam.NL.EU.undernet.org Message of the Day -
*** This service is provided by EuroNet Internet & Wanadoo - http://www.wanadoo.nl
*** Type /MOTD to read the AUP before continuing using this service.
*** The message of the day was last changed: 2003-7-10 21:21
*** on 1 ca 1(2) ft 10(10)

Figure 3.1: Initial messages when joining an IRC network (Undernet, on Jan 6, 2004)

Once inside the IRC, there are three basic methods by which a user communicate with

others: channels, private messages, and CTCP messages.

3.1.1.1 Channels

The most important means of communication in the IRC are group conversations insidechan-

nels3, also sometimes referred to as chat rooms. Users enter (”join”) channels, and then can

3For a detailed account of channels as seen by an IRC coder, seeKalt (2000b).

41

3 The Internet Relay Chat

submit text lines which are immediately sent to all other members of that channel. Every

line that a channel member sends to the channel is immediately displayed by each members’

client program, leading to a stream of text lines which, to a novice user, may appear somewhat

confusing:

<punky> nope
<deepee> You need logs. And proof of chan "ownership" and you need to persaude the irc

ops on the offenders server. A toughie.
<Bob_> Hmm, well looks like I will have to use my influence with BT to get ircop status.
*** BambiEyes (henrik@ppp01.prosalg.no) has joined channel #hottub
<BambiEyes> hi
<Bob_> obviously it will take sometime.
*** BambiEyes has left channel #hottub
<Bob_> Hi BamBi
<deepee> But that wont help unless they are connected through the bt server tho?
<deepee> Do we have any nicks/addresses to go by?
<Bob_> Yea but that way we could force a colide

Figure 3.2: Example conversation in the IRC channel ”#hottub”

The conversation inside a channel, as figure 3.2 shows, is a continuous stream of text lines.

Each message is prepended by the writer’s nickname. Channelstatus messages are inter-

spersed in the conversation, distinguished by the other messages through a leading of three

asterisks (”***”).

In the example, a userhenrik from the serverppp01.prosalg.no with nickname

BambiEyes , can be seen to have joined the channel#hottub , and, after saying ”hi”, left it

again.

Channels can have various properties, calledchannel modes, which alter various communi-

cation characteristics. For example, it is possible to denyentry to most or specific users, or to

allow only chosen members to talk on the channel.

These channel modes are decided by the role of thechannel operator. This role is assigned

to the user who created a new channel, just by joining a previously non-existent channel. This

means that any user, be it novice or long-time IRC user, can atany time open up new channels

in the IRC, and immediately become channel operator for thatchannel. As channels are the

main communication structure in the IRC, later chapters will examine its various properties

and uses.

3.1.1.2 Private Messages

In addition to channels, users can also send text messages privately to other single users or a

group. Some networks also allow users to send messages to allusers in the network; but often,

this function is reserved to network officials such as the IRCoperators4 for announcements

etc.
4For the role of the IRC operator, see below section 3.3.5 and chapter 7.

42

3.1 The Functional Perspective – Using the IRC

Another important use of the private message mechanism is the interaction with automated

clients, such as ”bots”5 and ”services”6. These connect to the IRC as clients, identified by a

nickname, like (human) users, but are programs or scripts which provide diverse functions.

Users send commands to the bots via private messages.

3.1.1.3 CTCP (Client-to-Client Protocol)

A special method of messaging is implemented as an extensionof private messages. Basically,

the Client-to-client protocol or short CTCP7 allows two IRCclient programsto exchange

command requests and responses with each other, using the private message mechanism as a

transport medium. To IRC servers, these requests and responses appear as if users exchange

text messages. But on the client software sides, the requestis interpreted, and a response sent

back.

One of the main uses for the CTCP mechanism is theestablishmentof a thedirect Inter-

net connection between two IRC clients outside the IRC network, called the DCC (Direct

Client-to-Client) mechanism: once established, a DCC connection is not relayed over the IRC

network any more, but two IRC clients connect to each other over the Internet, circumventing

the IRC network altogether. With such a DCC connection, users can chat with each other

without fear that an IRC server might eavesdrop on it8, or exchange large files between the

IRC clients instead of being relayed over the IRC network. Another important use of DCC is

the interaction with IRC bots9.

3.1.1.4 IRC Commands

User interact inside the IRC through commands. These commands are entered in the same way

as normal text messages. So in order to distinguish between text messages and commands, the

latter are prepended with a slash (’/’).

For example, a user joins a channel by issuing/join #hottub , leave it with/leave

#hottub , or sends a private message to another user with/msg WildThang .

Other commands allow the user to request information from the system: For example, in-

formation about other users is retrieved with the/who or /whois commands. The/list

command returns a list of channels with basic information about each one. The following

figure 3.3 gives an example for such a channel list10:

5See below chapter 6.2.
6See below chapter 6.3.
7See Undernet-User-Committee (1997a)
8The original document therefore claims it to be ”the ultimate in secure chat connections while still in an IRC

oriented protocol” (Rollo (1992)).
9See below chapter 6.2.

10The first column after the three asterisks show the channel name, usually prepended by a hash mark (’#’).
After the name, the current number of participants are shown, followed by the topic string which is supposed,

43

3 The Internet Relay Chat

Figure 3.3: Snapshot of a channel list in the Undernet

Yet other commands are reserved to privileged users, such aschannel operators or IRC

operators, and help with their administrative tasks.

As a rule, all user actions in the Internet Relay Chat are initiated with commands, some of

which are examined in detail in later chapters.

3.1.2 Size and Growth of the IRC

Before I describe the main technical concepts, some statistical data on the size and growth of

the IRC since its inception in 1988 should give an impressionon the rank of the IRC among

the Internet applications.

There are a number of indicators which can serve to judge the size of the IRC: the number

of users and channels, the number of different IRC networks,and the number of servers, both

in the IRC as whole, as well as in each IRC network. Unfortunately, there is only scattered

data for the first ten years of the IRC. For data from 1998 on, there are a some websites which

offer systematic data11, although their focus lies on current usage, not long-term statistics.

Still, from what is available, I can offer a sketch of the sizeand growth of the Internet.

Figure 3.4 shows the number of users and servers early in the IRC history. I have collected

these from various sources, such as ”history” documents, aswell as some IRC mailing list

messages, so the data may be of varying accuracy, and serve only to give an impression of the

size and growth in these times.

This data indicates some characteristics of the early IRC. In the first two years, the (at that

time only) IRC network was apparently used by those who also ran an server. Therefore it can

be assumed that the IRC users constituted a homogeneous, tight-knit community. Then, in the

first half of the 1990s, the usership began to show a fast growth which continues to this day:

from the 400 users in 1991 through about 5000 in late 1994 to recently more than 1.3 million

but obviously not limited, to give some information about the channel topic. This snapshot was taken at the
same session as the initial server messages shown above (figure 3.1), and therefore shows a list of eleven out
of 49991 channels.

11See for example http://irc.netsplit.de/, http://www.hinner.com/ircstat/.

44

3.1 The Functional Perspective – Using the IRC

Sources: (1) Stenberg (1998); (2) Rose and Ian (1999); (5) Rose, Helen (1990-09-08)Backbone Routing 9/7/90.
Mailing list IRClist (1991); (6) Lindahl, Greg (1990-09-18)Provisional backbone for eris-free net. Mailing list
IRClist (1991); (7) Lindahl, Greg (1990-09-20)eris-free US net backbone list, one change. Mailing list IRClist
(1991); (8) Rose, Helen (1990-10-23)Backbone plan 23 October. Mailing list IRClist (1991).

Figure 3.4: IRC growth from 1988 to late 1995

users worldwide on over 400000 channels12.

Until 1990, there was only one network, later called the ”Onet” (for the ’original IRC net’).

In September 1990, a dispute between the administrators ledto a split of the Onet into two

networks, of which only one, the EFnet, survived13. From 1993 on, parallel IRC networks

appeared: the Undernet (since 1993), DALnet (1994), and theIRCnet (1996); for some time,

these four constituted the ’four largest’ networks.

From mid-1995 on, other networks also formed14. One source has a count of 88 active

networks in October 1998, with 5 ”main” networks (>10000 users each), 10 ”big” ones (1000-

5000 users), 16 ”medium” (100-999) and 57 ”small” ones (<100users)15. In June 2001, the

same source lists over 300 networks. Recent numbers give a count of 679 networks in May

200316, and 2428 networks in January 200517.

12http://www.searchirc.com/networks (2005-01-08)
13See also below chapter 8.2.
14Some of these are: AUSTnet, Galaxynet, NewNet, WebChat (1996); Quakenet, RelicNet (1997).
15Source: http://netsplit.de/networks.19981013/ (2001-06-22)
16http://searchirc.com/ (2003-05-16)
17http://searchirc.com/ (2005-01-08)

45

3 The Internet Relay Chat

3.2 A Conceptual View of the Technology of IRC

This section offers a conceptual view on thetechnologythat constitutes the Internet Relay

Chat. The technical capabilities determine what can be donein the IRC, and they therefore

define its governance properties. This affords a basic understanding of what happens on the

technical level.

A working model of the IRC from the technical perspective18 is presented, including:

• The (technical) ”polity” of IRC: A structural description of the elements that constitute

an IRC network: IRC server, client, user bot, and service bot.

• The ”politics” of IRC: A processual view of the IRC network, with the IRC server as

main component

• The ”policy” of IRC: How policy objectives of the IRC settingare implemented in the

software. I will concentrate here on the means of how an IRC admin can change the

workings of the IRC server code, and thus influence its «code»policy implementation.

3.2.1 ”Polity”: Structural Overview of the IRC

One IRC networkis a set of IRC servers, interconnected in a specific way (topology) and

sharing data (data distribution). EachIRC server,a node in the IRC network, is a software

program running as a process on a host (a computer connected to the Internet), and managed

by an IRC administrator. Another software, theIRC client is employed by an IRC user to

connect to one of the servers in order to communicate with other members of that network.

A special case of IRC client is anIRC user bot: Users employ a bot to automate specific

tasks executed upon specific events. A special case of an IRC server, but similar to an IRC

user bot is theIRC service bot: It automates specific tasks, such as channel or nickname

registration; but in contrast to a user bot, a service bot is given (privileged) server status by the

other servers.

Figure 3.5 shows the basic relationship between these entities of a small IRC network with

three servers and two users/three clients.

18This chapter concentrates on those concepts and structuresimportant for the examination in subsequent chap-
ters. For a detailed account of the technology behind the IRCfrom actual IRC coders, see Oikarinen and
Reed (1993), and Kalt (2000a,b,c,d).

46

3.2 A Conceptual View of the Technology of IRC

Figure 3.5: Elements of an IRC network

3.2.1.1 IRC Server

The server forms the backbone of IRC as it is the only component of the protocol which is able to
link all the other components together: it provides a point to which clients may connect to talk to
each other [IRC-CLIENT], and a point for other servers to connect to [IRC-SERVER]. The server
is also responsible for providing the basic services definedby the IRC protocol.19

The IRC server is the central component of the IRC network: Itserves as connecting point for

the clients, and relays messages to the other servers and clients.

Technically, the server is a process, running on a host connected to the Internet. As a server,

it waits for incoming requests from the connected clients and other servers, process these

requests and then returns the results to the appropriate users and servers. It also maintains an

up-to-date system state of the entire network, including a list of users, channels, other servers

in the entire network. In order to keep this information current, all changes made by one server

are immediately propagated to all other servers.

Section 3.2.2.2 below presents a processual view of the server.

3.2.1.2 IRC Client

A client is anything connecting to a server that is not another server. [...]

User clients are generally programs providing a text based interface that is used to communicate

interactively via IRC. This particular type of clients is often referred as "users".20

IRC client programs have already been briefly introduced in section 3.1.1 above. They are

programs which give the user access to the IRC, similar to a web browser giving access to the

world wide web. IRC clients exist for many computing platforms21, and with different feature

sets. Some offer a text-only interface, while many have a graphical user interface.

19Kalt (2000a, pp.2-3)
20Kalt (2000a, p.3)
21For Windows systems, mIRC (http://www.mirc.com/) is said to be the most popular IRC client; for Macintosh,

Snak (http://www.snak.com/Snak.html) and Ircle (http://www.ircle.com/) are the most popular ones.

47

3 The Internet Relay Chat

Technically, IRC clients manage the connection to an IRC server, translate the user com-

mands into messages according to the IRC client-server protocol22, and send them to the con-

nected server. The responses from the server are then displayed to the user. One important

point here is that IRC networks often change details in theircommand and feature set, leading

to changes in the protocol. IRC client developers thereforecontinuously adapt their software

to cope with these changes.

3.2.1.3 IRC User Bot

With IRC client programs, users interact directly with the IRC network, sending commands

and messages, and receiving them. But these direct user interactions can be automated,

recorded into or written as programs or scripts which then are executed by the user to achieve

some outcomes. In the IRC, client programs which allow the user to automate tasks are called

IRC bots.

Such automated tasks began with the introduction of a scripting facility in a popular IRC

client, ircII23. Created in 1989 as first independent IRC client24, the developer Michael Sandrof

included the ability to create and run scripts: Users write asuccession of commands into a

text file which then can be executed. Also included are features like variables, parameter

substitution, and most importantly, the ability of a scriptto act on a message received from the

connected IRC network.

As simple example, the following line changes the default text for a /join message:

/on ^join * /echo $0 enters cavern $1 25

This rewrites the message before it is displayed to the user,replacing the placeholder$0 with

the name of the user who entered, and$1 with the channel name. So, the /join message on

line 5 in figure on page 42 on line 5 would be rewritten from

*** BambiEyes (henrik@ppp01.prosalg.no) has joined channel # hottub

into

*** BambiEyes (henrik@ppp01.prosalg.no) enters cavern #hott ub

The/on scripting command not only reacts on command messages like/join in this exam-

ple, but allows for sophisticated pattern matching on incoming messages. So while the above

22See below section 3.2.2.1.
23See http://www.irchelp.org/irchelp/ircii/
24The server software versions also included a IRC client program which offered a basic functionality without

the advanced features of ircII and later developed IRC clients.
25File [irc2.5.1.bu.08/clients/ircII2.02/script/cavern], line 6.

48

3.2 A Conceptual View of the Technology of IRC

is a very simple example, the scripting facility of the ircIIclient give users a powerful tool to

shape their IRC environment, automating all kinds of tasks.Consequently, all but the most

simple IRC client programs nowadays offer some kind of scripting facility similar to that of

the ircII.

The scripting facility in IRC clients is geared towards the interactive use, but another class

of bots exists which can be seen as IRC bots in a more narrow sense. These are programs

which are continuously connected to the IRC, waiting on somemessages to initiate a script.

This scheme is similar to servers, like the IRC server; but asIRC bots connect to the network

as an IRC client, they have no special capabilities (such as IRC servers do) beyond that of

an IRC client. Still, their programmability and other features makes them a powerful tool for

users and allows them to actively shape their IRC environment. Chapter 6.2.1 examines one

specific use of such bots, where users employ them to change the default channel ownership

policies of the network.

3.2.1.4 IRC Service

Unlike users, service clients are not intended to be used manually nor for talking. They have a
more limited access to the chat functions of the protocol, while optionally having access to more
private data from the servers.

Services are typically automatons used to provide some kindof service (not necessarily related
to IRC itself) to users. An example is a service collecting statistics about the origin of users
connected on the IRC network.26

Services are a kind of cross-section between IRC bots and IRCservers: Like the former, they

are automated programs which provide some special functions. In contrast to bots though,

services enjoy a status in the network similar to servers27.

Functionally, services are processes similar to servers, waiting for a request which they then

process and send a reply. But in contrast to servers, there provide only a few specific tasks that

they were created for. For example, some networks have installed a channel service: a central

point where user can register new channels to reserve the right (or privilege) to manage them

over a longer period. There is one single point, the service,which proceeds all managerial

tasks relevant to the channel service. Its maintainer are the only one in the network who can

alter its working. This is in contrast to all other IRC functions and services installed by the

whole set of IRC servers in the network in a distributed way. Services constitute a single

centralized point of power in the IRC network.

Examples for services (examined in detail later on) are nickname and channel registration

services28, and the centralized network control implemented by the UWorld service29.

26Kalt (2000a, p.3)
27For detailed information, see for example http://www.ircservices.esper.net/docs/1.html (2005-01-15).
28See below chapter 6.3.
29See below chapter 7.4.

49

3 The Internet Relay Chat

3.2.1.5 IRC Network

From the onset on, the IRC has been programmed to be a multi-server network which hides the

fact that multiple servers may be involved by posing to the client as a ”virtual” server: from

the viewpoint of the client, the server network behaves (almost) as if there is only one server

present. This certain setup of different computers, processes or (more technically) automata is

called adistributed system.

i

Distributed System

In a distributed system, a number of components, connected over a network, provides

services in a way that to the users it appears to them as one single entity. This means that the

distribution is hidden from the user, in contrast to normal networks, where users are aware

of the different components, such as hosts or processes.30.

Distributed systems are very common in the Internet, because often one computer does not

suffice to provide a specific service for many users. A classicexample is the Domain Name

System (DNS) in which the resolution process of domain namesinto Internet names (as well

as other Internet-related data) are maintained and served in a distributed manner31.

Two characteristics of the IRC server network are importantregarding the code governance

aspects: Thetopologyanddata distributionconcept chosen.

Topology

The IRC servers are connected to each other in a tree topology, or more technically, an acyclic

graph. This means that the server are connected to each otherso that there is exactly one path

to any other server in the tree (see figure 3.6).

Figure 3.6: Tree topology

30See "Free On-line Dictionary of Computing (09 FEB 02)", according to http://dict.die.net/distributed system/
(2004-03-04).

31See below chapter 8.1

50

3.2 A Conceptual View of the Technology of IRC

A tree topology is often depicted in form of a tree, which gives the impression that the nodes

form some kind of hierarchical relationship to each other. And hierarchies indeed normally

form a kind of tree shape, with the most powerful entity on top, the next powerful entities on

the second level, and so forth. The probably best known corresponding hierarchical structure

in the Internet is the network of name servers in the Domain Name System (DNS) which

implements an hierarchical structure, with the so called ”root server” on top, the ”top level

domain server” and ”country code top level domain server” onthe second level, and so forth32.

But equating the tree topology with an hierarchy is somewhatmisleading, at least in the

example of the Internet Relay Chat. Here the importance of one node is not only given by

its position in relation to other nodes in the network, but isdependent on a number of other

factors, such as connectivity (the data speed of its connections in the Internet, and in relation

to the neighbor nodes).

In addition, the IRC has implemented mechanisms which allowfor a dynamic reshaping of

the network in case of failure of one node, or disruption of a connection between two nodes.

Figure 3.7: Undernet network (around 1993).

Finally, and probably most important, is the relationship of its nodes defined by the specific

form of the distribution of the IRC data.

Data distribution

The data of the Internet Relay Chat is comprised of the state of the whole network with regard

to its connected servers and users, and the channels. This data is duplicated and maintained

32See also chapter Section 8.1

51

3 The Internet Relay Chat

in every IRC server; every IRC server holds the actual state of the entire network which is

constantly updated by sending every state change to every server in the network.

While at first sight this seems to be very wasteful in terms of bandwidth, this design was

chosen exactly in order to save as much bandwidth as possible. At the time of creation,

bandwidth was a precious resource, especially since the IRCnetworks run on university or

company hosts, using their bandwidth. Thus an most economical use of this bandwidth was

important. The IRC uses the network state information in order to send the main bulk of

data, the user messages, only to those servers where the addressees of this message (channel

members, receiver of private messages) are connected to.

The design chosen for the IRC server network is a tree topology network, with the state

information for the whole network kept current in every single server of the network. We

will see in chapter 8 that this design has an important influence on the constitution of the

social organization in the IRC: Since every server has the same data, their IRC administrators

are more or less on equal standing. There is no single server or group of servers (and their

admins) who control crucial data, and thus impose rules on the other servers.

3.2.2 ”Politics”: A Processual View of the IRC

3.2.2.1 The Client-server architecture

The basic architecture between IRC client and IRC server is shown in figure 3.8. This archi-

tecture is known as theclient-server architecture33.

Figure 3.8: Basic IRC client-server configuration

33Tanenbaum (1989, pp.455-6)

52

3.2 A Conceptual View of the Technology of IRC

Client-server architecture
This common architecture of many applications in the Internet is based on the principle to separate

the requester of a service (theclient) from the provider of a service (theserver), and to formalize

the communication between them in aclient-server protocol. In this architecture, the client always

initiates the communication by sending a request, while theserver never initiates, but only responds

to the requests. Often, in order to process the request, or for maintenance tasks, the server canact

as a client towards another server, which then constitutes aseparate client-server connection. Inside

one such connection, only the client acts, and the server responds.

Common applications that use the client-server architecture include the World Wide Web (browser

as client, web server as server), e-mail, ftp (file transfer), and the IRC.

i

In the case of the IRC, the principal design of the IRC client-server protocol has been

published two times as Request of Comments (RFC) of the Internet Engineering Task Force:

once in 1993, when only one IRC network, the EFnet existed34, and once in 2000, by an IRC

coder associated with the IRCnet35. While the principal design is the same in both documents

and reflects the basic design of all IRC networks, the specifics in commands, messages and

parameters differ from network to network.

3.2.2.2 Inside the IRC server process

Incoming IRC client requests are basically handled in threesteps: receive, parse/dispatch, pro-

cess, and respond. Along these lines, the internal data state is updated, and update messages

sent to the other IRC servers:

RECEIVE THE REQUEST – The server maintains a incoming message queue which is pro-

vided by the Internet interface of the operating system36. The server polls this queue in

regular intervals, and reads in each received request to be further processed.

PARSE/DISPATCH – The read-in request data is a sequence of characters which has to be in-

terpreted according to the format defined in the IRC client-server protocol: The parsing

function splits the request data into its functional components, such as the message iden-

tifier, the parameters provided by the user, the identifier ofthe request source, etc. Based

on the identifier, the request is dispatched to the appropriate function. For example, the

message identifierLIST , corresponding to the command/list , leads to the function

m_list() being called in the server.

PROCESS/RESPOND – The function called by the parser does the actual work of thecommand

processing, checking for privileges, changing the appropriate data structures, sending

34Oikarinen and Reed (1993)
35Kalt (2000c)
36In BSD Unix implementations, the so called ”socket” interface.

53

3 The Internet Relay Chat

request for data updating to the other servers, notices or messages to other users, and a

response to the user who sent the command. In the/list example, the function would

access the list of channels and send it back to the user.

After handling a request, the server processes some maintenance tasks (such as checking if

the connections to other servers are still active, etc.), and then continues with the next request

in the incoming queue.

Figure 3.9: Model of the server process

3.2.3 ”Policy”: IRC Server Installation and Configuration

An important step in the «code» governance setting of a server is how it is installed and set up.

Here the IRC administrator makes important decisions on thegovernance characteristics, such

as which users are allowed to join the IRC through that server, what powers the IRC operators

acquire, etc.

I sketch the steps leading from the IRC server source code to arunning server process.

It is assumed here that the IRC admin has set up all necessary prerequisites for the server

installation, such as choosing a host, making sure that the software development tools (C

compiler, linker, software libraries) exist, and so on.

The entire process can be split up into two phases:

• The installation itself, which includes configuring of the source code, and subsequent

compiling and linking which results in the binary executable program file of the server.

• The server configuration, where configuration files are edited, and startup options de-

termined by the administrator.

54

3.2 A Conceptual View of the Technology of IRC

3.2.3.1 Installation of the IRC server

The installation of the IRC server begins with the choice of asource code package and possible

patches (see below) and ends with an executable binary program file, suitable to be run as IRC

server process.

Figure 3.10: IRC server installation steps

A description of each of these steps follows.

Choosing the source code version

In the first step, the IRC administrator chooses the specific IRC source code package. Usually,

she can choose between several versions and sometimes even between versions of different

code series37. The choice affects what specific features the admin can makeavailable on the

server.

In the IRC, the general code policy has been to make new versions backward compatible, to

assure that a new version can interoperate with previous versions. Therefore, in IRC networks

one can observe that some admins choose not to update their server to a new version, because

the older version is perceived as being more stable, or because of the existence or absence of

some features.

The same can be said for different server series. The prevalent example is the EFnet, where

two series (called ”+CSr”, and ”+th”, which later merges into the ”hybrid” series)38 are avail-

able; the servers in these series are interoperable, and therefore can be used concurrently in

the EFnet.

Applying patches

In addition to series and versions, there are often a number of so called ”patches”39.

37Server code developed by different individuals or teams.
38See below in the appendix, chapter 14.2
39See http://en.wikipedia.org/wiki/Patch_(Unix) (2005-01-12) for further details.

55

3 The Internet Relay Chat

i

Patches

Patch files are text files which contain textual differences between two files, or two sets of

files. When applied to one file (or one set of files), a new file (orfile set) incorporating the

changes is created.

The main purpose of this mechanism is to distribute small changes for a larger source code

package without having to redistribute the whole package. The distribution of small changes

can then even occur in email messages, or in patch files which are considerably smaller than

the package itself.

As additional benefit for the IRC, besides the small size of patch files, these patches allow

the IRC administrator to install additional functionalities distributed through these patches.

Therefore, patches are a method for coders to distribute optional functionalities not incorpo-

rated into the main distributed package, a method for IRC admins to choose among different

functionalities offered by the available patches.

Configuring the source code

Before the source code is compiled and linked into a binary executable file, the IRC admin

configures the source code. This serves various purposes, not the least to determine the com-

pilation and linking settings specific to the computing environment of the server, (software

tools, libraries etc.). Besides the general configuration,IRC-specific options are present, some

of which are necessary to run the server, and others which change the functionality of the IRC

server. These configurations include enabling or disablingof operator privileges, activation of

logging facilities or of special commands. Admins configurethe source code either by run-

ning special configuration scripts provided with the sourcecode package, or manually edit the

appropriate files.

Configuration settings are options which are predefined by the coder. It is a means to com-

municate with the person who installs the software, to present choices affecting how the re-

sulting program works. These choices can be simple technical adaptations to the computing

environment, or the prospective uses of the software, but often are also governance choices of

the IRC as well.

In the code, several configuration mechanisms exist, different means of entering the options.

One of them is the#define directive, which is extensively used throughout the IRC server code,

so that I find it important to mention here. The other is thedirect source code change, because

in programs where the source code is available, it offers thelargest possible means to change

the workings of the software, including its governance characteristics, limited only by the

interoperability with the other components of the IRC network, such as the other servers and

clients.

56

3.2 A Conceptual View of the Technology of IRC

#define directive

The #define directive is a common construct provided by the C programming language. It

allows to associate a identifier label with a specific replacement string:

#define label replace-string

This directive is evaluated by the C preprocessor (a part of the compilation process) by

simply replacing everylabel with thereplace-string in the source code before the

compilation process begins. This is used for example to refer to constant values in the source

code with a name instead of a value, let’s say a hypotheticalBigNumber instead of the

value1234567.

In addition, the #define directive can also be given parameters which are substituted when

the directive is evaluated, and accompanying constructs such as#ifdef label (’evaluate

if label has been #define’d’) allow the conditional evaluation of code parts.

i

An example for the use of the #define directive is shown below in chapter 4.2.3: the ’max-

users-per-channel’ directive determines the number of users that can concurrently use a chan-

nel. The source code as distributed sets this value to10 , but the IRC admin can change it to

any other value she sees fit.

The #define labels do not only serve as replacement mechanism. Together with the ac-

companying conditional directives such as #ifdef, it allows to activate or inactive parts of the

source code by bracing them with conditional directives which depend on the status of the

#define label (either defined or undefined). For example, one server version includes a di-

rective#define OPER_KILL , which by default is activated. In this state, the IRC server

process allows IRC operators of this server to issue/kill commands40. But if the IRC ad-

min decides to revoke her own IRC operators the privilege to issue user /kills, all she has to

do it to replace#define OPER_KILL with #undef OPER_KILL , thereby deactivate the

respective source code parts.

As such, the #define directive is one of the main instruments to allow the IRC admin an

coder-provided way to change the «code» governance behavior of the IRC server program.

Arbitrary source code changes

In difference to the #define directive, changes of the sourcecode itself allows the IRC admin

to incorporate changes which were not made by the coders. Anychanges can be made, and

the admin is limited only by her knowledge of the code, and theinteroperability with other

IRC servers. Regularly voiced concerns over ”hacked servers” in IRC mailing lists and other

documents indicate that this option appears to be used frequently.

40See chapter 5.1 for the explanation of the/kill command.

57

3 The Internet Relay Chat

Compiling and Linking

When the server has been configured, the source code is now processed to create a binary

program file which then can directly started. This processing includes the preprocessing and

compiling the source code files to get object files, and to linkall object files and libraries to

get the final binary program.

3.2.3.2 IRC server configuration

Once the installation of the IRC server is completed, the IRCserver must be provided with

some configuration information. The main location for thesesettings is theircd.conf

configuration file. Additionally, some settings can be provided upon startup of the IRC server..

Configuration lines in the ircd.conf configuration file

The central place for the configuration of the IRC server is the ircd.conf configuration

file. This file contains all the settings necessary for the IRC server, such as the servers which it

can connect to, which client connections to allow and which to reject, as well as information

about the server itself.

The file itself is a normal text file which contains so calledconfiguration lines(or short

config lines). Each line represents one specific setting, such as information about the server

and the administrator, a list of other IRC servers which may connect to this one, or to which

the local server may connect, users who may connect, or who are banned from the server, etc.

Here is an example for a config line:

M:BUCSD.BU.EDU:* :Boston University Hoopy Test Server:6667

This example is an M-line (defined by the first letter; the letter ’M’ stands for ’me’, i.e. the

server itself), and defines the name of the IRC server. Parameter fields are separated by colons;

so this line sets identifies the host as ”bucsd.bu.edu”, withthe (self-chosen) name ”Boston

University Hoopy Test Server”, and the default port on 6667 (the third field with the asterisk

is not used).

Table 3.1 on the facing page lists the main config lines of the IRC server version 2.1.141.

Config lines roughly fall into three categories:

• Information: These config lines contain information about the server, such as the name

of the IRC server, or some administrative information such as the administrator’s per-

sonal details.

• Server-server: The main configuration lines in this categories are the so called C/N

lines. They determine to which server the local server can connect, and which other

41The oldest IRC server version for which I have the source codeavailable.

58

3.2 A Conceptual View of the Technology of IRC

Name Label in the source code Category Description

A CONF_ADMIN Information Administrative information of the server

M CONF_ME Information The server’s name

C CONF_CONNECT_SERVER Server-Server
Sets up connection to other servers (together

with N-line)

N CONF_NOCONNECT_SERVER Server-Server
Sets up connection to other servers (together

with C-line)

I CONF_CLIENT Client-Server Authorizes clients to connect

O CONF_OPERATOR Client-Server Authorizes IRC operator

K CONF_KILL Client-Server Kill user line

Table 3.1: Configuration lines in server version irc2.1.1 (Oct. 1989)

servers may connect to the local server. It is used to determine the network structure of

the IRC network, i.e. which server are connected to which others.

• Client-server: These lines affect the ways that IRC clients can interact with the IRC

server. For example, the I-line42 determines which user groups are allowed to connect

to the server, while the all users matching a K-line43 are denied entry. The O-line44

authorizes a user to gain IRC operator status.

Configuration lines are meant to let the IRC admin decide about the way how the IRC server

’behaves’, and is therefore an important governance mechanism inside the IRC. In subsequent

chapters, I will outline the «code» governance features of some of these configuration lines.

Startup options

Finally, next to the configuration files, some settings can beprovided to the server process

upon start-up. These settings override equivalents made inthe installation process, or those in

corresponding config lines, such as the location of the configuration file, specifying the debug

level, and others. In IRC servers, all important settings are done in the configuration file, so

the startup options play a minor role.

3.2.4 Technical environment and code distribution

The ircd server code was written in the programming languageC for hosts running Unix

operating systems. Both language and operating systems have been and are readily available

42Regarding I-lines, see the subsection on K-lines and I-lines in chapter 5.2.1
43See below chapter 5.2.
44See below chapter 7.1.

59

3 The Internet Relay Chat

both as technology (compiler, linker and development environment; computers running an

Unix operating system) and as knowledge (such as books and other information sources).

This means that there have been and are always a large pool of people who can understand the

code, and can make changes to it. It is save to assume that every IRC server administrator at

least has a basic grasp of the inner workings of the server; many who contributed to the ircd

source code indeed have also at one time been administratinga server, or serving other official

position in the IRC community.

The IRCclient code was initially written by the IRC creator Oikarinen as well, and at first

distributed together with the server code. Later on, othershave created and maintain indepen-

dent IRC client software in many computer languages and for diverse computer platforms, so

that nowadays the prospective IRC user can choose from a widevariety of IRC client software.

A very important choice of basically all IRC server code, andmany of the IRC client code,

is that they are distributed asopen sourcesoftware45. This is important because in this way,

anyone can take the IRC code, make modification of it and run a new IRC network with it.

This is a situation that does normally not arise in other opensource software, because the use

of the software is more detached from its development. Here the choice of open sourcing the

IRC leads directly to the power of anyone to open up new IRC networks, and implement new

features into it.

3.3 Main Social Roles in the IRC

Besides the technical structure, another important part ofa techno-social setting are the roles

that individuals can assume. In the IRC, we can roughly distinguish two kinds of roles:

• Four roles arising from the general setting: Thecoderwho designs and maintains the

software involved, especially the server code; theIRC administratorwho sets up, con-

figures and runs the IRC servers; theIRC user, who additionally may maintain an IRC

user bot; and theIRC service administrator.

• Two roles defined by the technical design: Thechannel operator, who manages and

controls a channel; and theIRC operator, a administrator appointed official who has

maintenance tasks.

As these roles play an important role in my explorations in the remainder of this work, they

are outlined here. Table 3.2 lists the main roles in the Internet Relay Chat.

45For the events which let the IRC fall under the GNU Public License, see appendix chapter 12.7.

60

3.3 Main Social Roles in the IRC

Social Role Description

IRC administrator (IRCadmin) Set up, configuration, and maintenance of an IRC server

IRC service administrator Set up, configuration, and maintenance of an IRC ser-

vice bot

Coder Design and implementation of the IRC software

IRC user Participant in an IRC network

IRC operator (IRCop) Daily management tasks of an IRC server and in IRC

network

Channel operator (chanop) Configuration, management of and control over an IRC

channel

Table 3.2: Social Roles in the IRC

3.3.1 IRC administrator

The most important role in the IRC is that of the IRC administrator. Not only does she set up,

and configure an IRC server, which gives her power over the server and in the IRC network, but

she also is the one who contributes or organizes the necessary hardware and bandwidth for the

IRC. Without the contribution and the work of the IRC administrators, there would be no IRC

network, because there is no overarching organization which provides the necessary equip-

ment and bandwidth. This fact also makes the IRC aself-organized setting: The existence of

the IRC network solely depends on the voluntary contributions of the IRC administrators.

The main tasks of IRC administrators, besides the provisionof hardware and connectivity,

is the maintenance of the IRC server software: to set up and configure it, to install possible

new versions and patches46, and to secure its trouble free functioning. For the latter task, the

IRC administrators appoint IRC operators (see below) as helpers.

In the network, the IRC admin is part of the group of admins, which form the highest ’po-

litical’ body of the network, setting up policies, and in general making all decisions regarding

the network at large. The technical setting gives all IRC administrators roughly the same de-

cisional power47, so that the institutional form of this group varies betweenthe network, and

is not predetermined by the technical structure.

3.3.2 IRC Service administrator

The IRC service administratormanages an IRC service bot48, and has controls the source

code and program of the service bot. This is important because a service oftencentralizes

functions in an otherwise decentralized IRC network. So changes in the service are much

46See above section 3.2.3.1.
47Topology and data distribution; see chapter 8.
48See above chapter 3.2.1.4 and below chapter 6.3

61

3 The Internet Relay Chat

easier to accomplish than changes in the IRC server, for which every server would have to

be changed. On the other hand, the service administrator hascentral control over the service

functionality, whereas normal IRC functions are controlled in a distributed manner by the

admins and operators.

3.3.3 Coder

Like in other open source software projects, the IRC code development always needs the

infusion of people who dedicate their time and effort to maintain and develop the IRC code

base. From the onset on, the source code has been open sourced, not the least to interest others

to run their own IRC server, and eventually connect them together to form their own IRC

networks. Thus, studying the code as well as running the program has been made possible.

Consequently there has always been an influx of contributions to the code, from single bug

fixes to complete rewrites and competing server series, by IRC admins and other interested

users. At all times though, there were individuals who have taken over maintenance and

coordination duties for an entire version, or have continually contributed large parts of the

code; these individuals can be identified asIRC coders.

There are a number of individual coders who became widely known, due to their continuing

contribution to the IRC in general, not only source code. Theinitial creator of the IRC, Jarkko

Oikarinen, is probably the best known coder. And for many versions, single coders have

coordinated the entire source code, or single-handedly created and maintained a server source

code series49. In other cases, IRC networks have established coding teamsor committees50

who coordinate the work of the individual coders.

The relationship between coders and IRC admins is necessarily a tight one, and often

enough the coders are or have been IRC admins themselves. This relationship is crucial

because every IRC admin is always free to accept or reject anycode changes, even entire

versions. Therefore, in many server code versions one can trace the efforts of coders to offer

choices instead of forcing changes on the admins. These choices can come in form of code

configuration mechanisms, or by ensuring backward compatibility with earlier versions, so

that admins can choose to install new versions, or continue running older ones.

3.3.4 IRC user

Not surprisingly, the IRC user is the most common role in the IRC. It it for the users that the

whole IRC exists. But the basic opportunities given to usersis quite broad.

49The prime example here is Chris Behrens (comstud), who created first developed his own IRC server based on
an EFnet version, the irc2.8.21+CS series, and recently hascreated a new series ”written 99% from scratch”
(csircd series; see http://www.comstud.com/ircd/).

50For example the Undernet coding committee (http://coder-com.undernet.org/), or the DALnet coders team.

62

3.3 Main Social Roles in the IRC

First, most IRC networks are open to anyone to enter and use the facilities; no membership

application is required, or fees involved. Given that thereexist many IRC networks, users have

a broad choice of networks to choose from.

Inside a network, the user can join most channels, but also can create new channels at

will, for which she becomes the channel operator (see below); in addition, users can expand

their capabilities by running IRC bots51. Sometimes, she gets promoted to the role of an IRC

operator by an IRC administrator52.

Finally, from this large pool of IRC users there is a constantflow of contributions for the

whole IRC community: Contributions to the code base, new IRCadministrators, or members

of IRC network committees53 concerned with network management, code development coor-

dination, public relations etc. Also, the wealth of documents and information (introductions,

server lists, statistics etc.) about the IRC in world wide web sites, mailing lists, or newsgroups

is a contribution by its users.

3.3.5 IRC operator

IRC operators (or short ”IRCops”) are users who are appointed by IRC administrators to

help in maintenance tasks, and have access to privileged commands. Their duties encompass

administrative functions for the maintenance of their local IRC server, maintenance of the

whole network, and helping and administering IRC users.

This is an entirely code-generated role in the IRC, as all privileges and commands are given

by the IRC system. Once the privileges are revoked, an IRC operator again is a simple IRC

user.

It is safe to assume that IRC administrators who appoint the IRC operators, also give them-

selves operator status when inside the IRC. But with the growing membership and thus grow-

ing work to be done, there are much more IRC operators in the network than IRC admins.

A special role constitutes thelocal IRC operators (or ”locops”): These are operators whose

scope of power is limited to the server to which they are directly connected, or the server they

are authorized by54.

Finally, the Undernet Uworld has implemented its own hierarchy of users with quasi-IRC

operator status and power55.

51See above 3.2.1.3
52On the difficulties of becoming an IRC operator, see below chapter 7.
53The Undernet and DALnet are two examples where such committees have formed. See their respective home-

pages at http://www.undernet.org/ and http://www.dal.net/.
54For the concept of server locality, see the information box ”Locality” below, p.90.
55See below chapter 7.4.

63

3 The Internet Relay Chat

3.3.6 Channel operator

The IRC allows any user to create new channels at any time. Theuser who creates a new

channel is appointedchannel operator, and has absolute power over this channel. She can

change a number of channel properties, deny entry or allow entry to the channel, etc. As this

role serves a pivotal governance role inside the IRC, the next chapter 4 below will provide

more details about this role.

Summary

This section has given an overview over the Internet Relay Chat system. It consists of many

networks, each a number of IRC servers connected to each other to provide chat services to the

users who connect to it via an IRC client program. Inside the IRC, users mainly communicate

with each other in channels, but can also send private messages to each other.

Technically, the IRC consists of many components: server, client, bots and services, inter-

connected to a network in a specific topology and data distribution scheme. The IRC server is

the main component in the network, set up and configured by theIRC administrator who has

considerable power to change the server behavior since it comes in source code, and different

versions and series exist to choose from. Client and server interact with each other through a

client-server architecture.

The IRC knows several different social roles: next to the administrators, coders and simple

users, the IRC operator and channel operator have specific managerial tasks inside the IRC.

Finally, the IRC networks are set up and run by the principalson a voluntary basis, that

is there is no single corporation or overarching organization which runs these networks: The

IRC networks are self-organized. Also, the principals of the IRC do rely on social norms and,

most importantly, on the «code», the shape and shaping of theIRC technology, to create and

maintain the social order: The Internet Relay Chat is a self-governed setting. The goal of the

following chapters is to offer some insight on the various way «code» is employed to govern

the IRC setting.

64

4 «Code» Governance in IRC

Channels

The previous chapter has laid the foundation of my IRC «code»governance exploration by

giving an overview of the technical and social structures ofthe Internet Relay Chat. Building

on this foundation, this chapter now examines the central communication structure of the IRC,

thechannel.

Channels are the main communication structure inside the IRC: They allow users to create

and participate in group conversations. Channels can take various forms, from private ones

with only a few invited users up to open public fora with tens or hundreds of participants.

Some channels are so popular that they have built a ”channel community” around it, with web

sites, personal meetings etc. Also as a basic principle in all large IRC networks, any user

can create new channels at any time, so it is not surprising that there exists a large number of

channels throughout the IRC networks. At one time, a websitecollecting IRC statistics listed

over 620,000 channels with more than 1.3 million users1. Certainly, without channels, there

would be no Internet Relay Chat.

My exploration of the «code» governance of the IRC thus begins with the IRC channels.

First, in section 4.1, I set the stage by giving an overview the principal features and func-

tionality of channels in the IRC, and its technical working behind the scenes:

• Channels are identified bynameand a textualtopic, and have a set of properties called

channel modes, allowing users to form the channel to their communication needs.

• Internally in the IRC server code, a channel is represented by adata structureandfunc-

tionsacting on the data structure, both of which determine the technical functionality of

channels.

This description only provides an overview of these features and code design common to all

IRC instances, a kind of a ’channel constitution’. The remainder of this chapter concentrates

on the ’channel laws’, those feature and design details which shape specific policies, and adapt

to changing social conditions.

1http://netsplit.de/networks/ (2004-12-15)

65

4 «Code» Governance in IRC Channels

Section 4.2 begins with the specifics of channels as present in the early versions of the

IRC in the first two years of its existence. The analysis of thefirst channel design in IRC

shows how the technology forms the constraints and opportunities that directly govern the

user. Specifically, I describe the implementation of a feature which limits the maximal number

of users in channels. As we will see, this early channel design is characterized by its lack of

configurability, constraining users rather than opening uppossibilities for them.

This lack of configurability becomes evident when compared to the later channel design,

now standard in all IRC networks:named channels(section 4.3). Th change from numbered

to named channels is accompanied by a complete overhaul of the governance characteristics,

the possibilities and constraints given to the users, entirely realized through the change in the

IRC server code. I approach the analysis by highlighting thechanges made from numbered

to named channels, including the introduction of configurable channel modes as well as the

role of the channel operator. Also, continuing the case of the ”maximal number of users”

property from the previous section, I show how the implementation differences lead to the

changed characteristics in its use. An overview of further changes in the IRC channel design

over the years and in different IRC networks gives a hint of the breadth of innovation potential

in «code» rules.

In sum, the examination of the channel facility shows how theprincipals in the IRC use

«code» to shape the social setting of the IRC, and adapt it to changing conditions. The changes

are clearly not induced by technical necessity, such as heightened application stability, or

scalability, but ’enacted’ to shape or influence the social interactions of the IRC users. The

«code» is used as a regulation system, and changes in the software are changes in the «code»

governance system.

In later chapters, I will recur to certain features of named channels, such as disputes around

the ’ownership’ over channel names (chapter 6), showing that changes in «code», as typical in

other regulation modalities as well, not only maintain the social order in the setting, but also

create potential for new disputes and disruption.

4.1 Principal Channel Design

”A channel is a named group of one or more users which will all receive messages addressed to

that channel. A channel is characterized by its name and current members, it also has a set of

properties which can be manipulated by (some of) its members.”2

The basic concept of IRC channels is not a novel one: Users form a discussion group, with

individual messages sent to this group being immediately dispatched to all members. Mailing

2Kalt (2000a, p.4)

66

4.1 Principal Channel Design

lists, Netnews newsgroups, or web fora all offer such a functionality, although these discus-

sions do not occur in real-time, but their messages take sometime until they reach all re-

cipients. But other real-time discussion groups also existed before the IRC was created, and

indeed Jarkko Oikarinen has mentioned some predecessors ofthe IRC, such as chat rooms in

bulletin board systems, and the Bitnet relay chat3.

The basics of channels presented here are well-known concepts; it is in the implementation

details that the IRC offers interesting extensions to this basic concept.

The constituting elements of IRC channels are thechannel name, which identifies the chan-

nel; an optionaltopic string, which give a hint of what might be talked about in the channel;

and a set of properties of the channel calledchannel modes.

Channel namesidentify channels in an IRC network. In early IRC versions, channel names

consisted simply of a number, like ’1’, ’49283’, or ’-458’ (numbered channels); as standard

now in all IRC networks, a channel name consists of a sequenceof alphanumeric characters of

some maximal length (between 32 and 200 characters). In order to distinguish channel names

from other strings (such as text messages, or IRC commands),they are prepended with a hash

mark (’#’)4; for example, a channel named ’hottub’ is denoted as#hottub . The main use

of the name is to identify the channel in user commands, such as entering (/join #hottub)

or exiting a channel (/leave #hottub). Inside one IRC network, a channel name must be

unique; there can be only one#hottub in the EFnet. But the same channel name can occur

in different IRC networks, so#hottub may exist in the Undernet, DALnet or any other IRC

network as well. Finally, a special ’null channel’ exists inall networks: this is the the first

channel that all users enters when connecting to the network. It is special insofar as it does

not allow any conversations; but all members of a IRC networkare also member of the null

channel, therefore a list of users of that channel is equal tothe list of connected users.

For each channel atopic can be provided. This is a one-line text which is displayed along

with the channel name in channel listings. The channel groupcan provide here any text they

see fit, including a short description of the topic of discussions in that channel. For example,

the channel#hottub on DALnet at one time displayed the topic ”Welcome to Hottub... web-

site www.thehottub.net Enjoy your stay and have fun!!!”5. But as the example for a channel

listing above (figure 3.3 on page 44) shows, there is no restriction on the contents of the topic

text.

Finally, channels have certain properties calledchannel modes. These modes determine

who and how many users may enter the channel, how the channel is visible to users outside

3The web pages under http://web.inter.nl.net/users/fred/relay/index.html (2004-12-16) give an detailed account
on the Bitnet Relay Chat.

4In some server implementation, special channels have different symbols prepended, such as the ampersand
symbol (’&’) for channels which only exist locally on one server.

5On 16 Dec 2004, found through the http://irc.netsplit.de/networks channel search engine.

67

4 «Code» Governance in IRC Channels

the channel (channel visibility), and the modes of communication inside. These specific modes

(and the means to manage them) are an important governance characteristics in the IRC, and as

such differ throughout the IRC software versions and networks. Much of the later discussion

in this chapter will be therefore concerned with channel modes.

The IRC provides a number of commands which allow users to gather information about

channels, or initiate actions such as entering or leaving channels. Some of the more common

ones are listed in table 4.1.

Command Description

/list lists channels, number of users, topic

/join #channel sets your current channel

/leave #channel leaves a channel

/topic #channel topic-string changes the topic of the channel

/mode #channel parameters shows or changes channel modes

Table 4.1: Common commands in connection with IRC channels (Pioch, 1993)

Implementational specifics of commands are important when we examine the governance

characteristics. For example, the next section 4.2 shows how a certain property (maximal

number of users in a channel) is implemented in the/join command. The actual design

and implementation, including side effects, of commands isan important topic in a «code»

governance analysis.

Based on this principal architecture of IRC channels, the following sections will now exam-

ine specific «code» governance structures in different versions of the IRC server code.

4.2 Numbered Channels

In this section I introduce the basic design of numbered channels as it appeared in the first

versions of the IRC. This initial design is characterized byits lack of configurability by the

users: Channel names were numbers, not text string names; its properties (channel mode)

were fixed to number ranges, and could not be changed by the users. In these terms, the

design was restrictive in terms of its «code» governance characteristics. This is not due to any

malfeasance from the side of the developers; instead, the early versions were a ’first release’

software, were principal functionalities were already present, but further innovations in code

(the technology) and «code» (the governance characteristics) were continually added.

For my examination, this first design serves as a blueprint against which I will compare the

changes made in later versions. Also, I give a first account onwhat I call«code» rule patterns:

Specific code patterns which have certain governance impacts on the social setting.

68

4.2 Numbered Channels

4.2.1 Functional Design

D A L n e t I R C n e tU n d e r n e t1 9 9 0 1 9 9 6 2 0 0 0E F n e t E F n e tA n e t1 9 8 8 O n e t 1 9 9 2 1 9 9 4 1 9 9 8
N a m e d C h a n n e l sN u m b e r e dC h a n n e l s

Figure 4.1: IRC Timeline – Numbered Channels

Numbered channels are present from the beginning of the IRC in August 1988, to be re-

placed by named channels in server version irc2.5+ (July 1990). This channel environment

therefore lasted for the initial two years of the existence of the IRC, where the application was

in its infancy, with probably less than 50 users on average.

The functional characteristics of numbered channels show themselves in itsname, topic,

andchannel modes.

Channelnamesconsisted of a number, either positive or negative ones, such as channels

”1”, ”19408”, or channel ”-548”.

Each channel also possessed achannel topic, a short text which is displayed in the channel

listing next to the channel number, to give users a hint of what was discussed in the channel,

since the name could not provide with such a hint. And since there existed no technology-

induced hierarchy between the members of the channel, any member could change the topic

text at any time.

The characteristics of a channel, itschannel modes, was limited to itsvisibility and the

maximal number of channel members.

Channelvisibility refers to the ability of users outside the channel to learn ofits existence,

or to find out who is member of that channel. This visibility property was fixed to number

ranges:

• Channels 1 to 999, calledpublic channels, were visible to all users. These channels

appeared in the list of channels (using the/list command), and its members were

identified in the list of users (using the command/who), where the channel name ap-

peared next to the user name6.

• All channels 1000 and up weresecret channels: While the channel appeared in the list

of channels, none of its members would be identified as such inthe list of users, making

6As another restriction in this design, users could only be member of one channel at the time. The introduction
of named channels lifted this constraint as well.

69

4 «Code» Governance in IRC Channels

it very time-consuming7 to find the user in a secret channel.

• Channels with names in the negative number range werehidden channels: Neither the

channel nor its users appeared in the respective lists. Thisensured that only those having

been told the channel name/number could join the channel, ifthe number was carefully

chosen (i.e., rather -234981 than -4).

The channel property being fixed to number ranges, it was not possible to change the visibility

of a channel. If for example the members of a public channel wanted to change it to a secret

channel, they had to move to one in the range 1000 and up; any user who normally was

member of that channel, but by chance not present at that timehad to get notified of that

move. Such a move (or rather change of channel characteristics) is quite common in the IRC:

It regularly happens that obnoxious users disturb discussions in a channel, or that two or more

groups inside a channel fight with each other. With the fixed channel properties, there was

no other means to resolve such issues than move to another channel. The overall design of

channels constrained the users in their ability to deal withsuch disrupions by themselves.

4.2.2 Technical Implementation

The actual source code reflects the functional design of numbered channels. As my «code»

exploration relies mainly on the source code to understand its governance properties, I present

here an outline of the technical implementation (without going too much into details). My

intention is to show how implementation and functionality are intertwined, not only from a

purely technical, but also from the «code» governance perspective.

Channel data structure

The code for channels can be separated into thedata structureand thefunctionsthat work

on that data8. Each numbered channel is represented by one data structurenamedstruct 9

Channel , composed of the four variableschanno , name, users , andnextch :

Algorithm 1 Thestruct Channel data structure (slightly simplified)
struct Channel {

struct Channel * nextch;
int channo;
char name[CHANNELLEN+1];
int users;

}

Source: [irc2.1.1/struct.h:190-195].

7Looking for a user would mean to enter every of the more than 30.000 channels from number 1000 until the
user had been found.

8This is a common distinction in programming, institutionalized in the object oriented design paradigm.
9The wordstruct is a special keyword in C to denote a data structure.

70

4.2 Numbered Channels

Certain things should be immediately obvious, while othersare somewhat more hidden:

• The variablechanno serves as channel name, while variablename is the channel topic.

This can only be found out by examining how functions make useof them.

• As channo is of typeint , integer, it follows that channels can only have numbers as

name. Also, most system interpret an integer as being in the range of -32768 to 3276710,

so given the visibility ranges, there were 32768 hidden channels, 999 public ones and

31768 secret channels available.

• The Variableusers contains the number of actual members in the channel, and is used

by the ’maximal user per channel’ feature11.

As is obvious for the channel name asintegervariablechanno , the implementation defines

the constraints (only numbers as channel names). While thisexample is quite simple, the

general principle that ultimately, the constraints and opportunities of a technology-based social

setting, its regulation system, is defined by its implementation details, and not only standards

and protocols.

The channel list

The data structurestruct Channel holds the data for one channel. The channellinked

list12 is anchored in a global variable13 calledchannel 14.s t r u c t C h a n n e ln e x t c h1 4" a n i c e t o p i c "u s e r s = 5c h a n n e l s t r u c t C h a n n e ln e x t c h� 3 4 9 8" v e r y h i d d e n "u s e r s = 7 s t r u c t C h a n n e ln e x t c h2 3 0 4 9" t h i s i s a s e c r e t "u s e r s = 2
Figure 4.2: Linked list for channels

Functions which access the channel list thus starts with theglobal variablechannel and

steps through each entry, following the pointernextch to the next entry.

Visibility constraints in the code functions

As an example for implementation details defining governance constraints, I trace the design

of the visibility characteristics of channels (public, secret, and hidden channels). As the data

10This assumes an integer size of 16 bits, which is not always the case. But for the present discussions, this
assumption is sufficient, as it should only give an overview.

11Section 4.2.3
12In a linked list, each data entry holds a pointer (nextch in figure 4.2) which refers to the next entry in the

list. The end of the linked list is reached with the pointer ofthe last entry which contains a special null value
(’null pointer’). In the figure, the entry pointer is nextch.

13A global variable is one with a global scope, i.e. it can be accessed by all functions in the software.
14[irc2.1.1/s_msg.c:46]

71

4 «Code» Governance in IRC Channels

structure shows, no provisions are made in the channel entrywhich would point towards this

functionality. Instead, one has to look into the functions which work on the data structure.

Since the visibility affects the output of the/list command, this functionality can be

traced to the corresponding function,m_list() . Basically, this function steps through each

entry of the channel list. For each of the entries, the function now checks the visibility status

by calling another function15, VisibleChannel() . When this function returns the value

”true”, thenm_list() shows the channel name to the command issuer, otherwise the name

is replaced by a asterisk character (”*”).

So the visibility condition hinges on the functionVisibleChannel() . It defines the

conditions under which channels are shown, and which are not. Implementation details of this

function make clear that the above described number ranges for the visibility (public, hidden,

and secret) are hard-coded, that means it cannot be changed once the server process is running.

The design does not provide any means to change this channel property.

The major points that have been shown here are the implementation structure for the example
of the channel list, distinguished into thedata structureandfunctions:

• A sequence ofdata structureentries, each holding the information for one channel, and

a pointer to the next entry; a global variable points to the beginning of that sequence, the

starting point for the functions who operate on this list. Some governance characteristics

are implemented here, such as the channel name being represented by a number.

• Functionsoperate on this list, implementing other governance characteristics, such as

the visibility property of channels.

In the next section, I examine the other channel property next to visibility in numbered chan-

nels: the ’maximum number of users per channel’ property. Drawing on its functionality,

implementation, and a discussion about it in a mailing list,one gets an impression of the pro-

cesses (”politics”) around such a feature. In section 4.3.1below, the resolution is shown in the

form of a changed channel property.

4.2.3 The ”Maximum Users Per Channel” Channel Property

Themaximum users per channelproperty. serves as a case analysis of how the IRC ’manages

their common affairs’: how the principals voiced their discontent with the implementation,

and how a resolution was reached.

I first outline the functional and implementation details, and then provide an account of the

discussion as it occurred in the then central mailing list for IRC participants. That discussion

15Actually, this function is implemented as a#define directive; for our context though, this is insignificant.

72

4.2 Numbered Channels

cumulated in a voting which lead to the revocation of the channel limit. The ultimate resolu-

tion though followed with the change of the entire channel design, and will be described in

section 4.3.1 below.

Functional design

When Jarkko Oikarinen implemented the IRC channels, he considered it necessary to limit

the number of users who could concurrently be in one channel,based on his experience that

”[a]fter a certain number of people jump in, the conversation often goes to hell.”16 He therefore

included into the code a restriction of maximal ten users whocould concurrently enter and use

a channel. This restriction was absolutely binding for all users, i.e. there was no means

to circumvent it. As soon as a user tried to join a channel withalready 10 members, she

was rejected with the message ”Sorry, Channel is full.” The only exception implemented by

Oikarinen were channels 1 to 10, which he declared as ’unlimited channels’, with no restriction

to the number of users that could enter these channels. For all channels outside the range 1 to

10, the hard-coded and self-executed substantive «code» rule was that only 10 members were

allowed in a channel.

Technical implementation

The ’max users per channel’ functionality relies on the variableusers in the channel data

structurestruct Channel 17 described above. This variable holds the number of users

who are in the respective channel, and is continuously kept updated by the system. Every

time a user requests to enter a channel (command/join), the respective function (called

m_channel()) checks the limit by calling another function18 namedis_full() :

Algorithm 2 Channel limit check inm_channel()
if (cptr == sptr && is_full(i, chptr->users)) {

sendto_one(sptr, ”:%s %d %s %d :Sorry, channel is full.”,
myhostname, ERR_CHANNELISFULL, sptr->nickname, i);

return(0);
}
chptr->users++;

Source: [irc2.1.1/s_msg.c:619-624].

This code snippet inm_channel() shows the conditional statement in the first line calling

the functionis_full() . If the function returns a ’true’ value, then the command issuer is

sent the message ”Sorry, channel is full” (functionsendto_one()) , and the function ends

with thereturn(0) statement. If the condition is false, then the linechptr->users in-

crements theusers variable for the channel entry, updating this counter of theactual number

of users in that channel, and the user is allowed to join the channel.

16Oikarinen, Jarkko (1990-05-21)Channel restriction. Mailing list IRClist (1991)(citing another message).
17See above algorithm 1.
18Again, this function is implemented as a directive. And again, this distinction is irrelevant for our discussion.

73

4 «Code» Governance in IRC Channels

The functionis_full() is shown next. It returns the value ’true’, if two conditionsare

met:

• The channel is not one of the ’unlimited’ channels. This is checked by calling yet

another functionUnLimChannel() , also shown here. It evaluates true if the channel

is in the range 1 to 10.

• The actual number of users is greater or equal a variable namedmaxusersperchannel .

Algorithm 3 is_full() and UnLimChannel() functions
#define is_full(ch, us) (!UnLimChannel((ch)) && ((us) >= m axusersperchannel))
#define UnLimChannel(x) (((x) > 0) && ((x) < 10))

Source: [irc2.1.1/struct.h:251,226].

Finally, the variablemaxusersperchannel is assigned its value at server startup from

a #define directive unsurprisingly calledMAXUSERSPERCHANNELwith the default value 10.

Algorithm 4 MAXUSERSPERCHANNEL directive
#define MAXUSERSPERCHANNEL 10 /* 10 is currently recommended. If this is * /

/ * zero or negative, no restrictions exist * /
/ * If you are connected to other ircds, do * /
/ * NOT change this from default without * /
/ * asking from other irc administrators * /
/ * first ! * /

Source: [irc2.1.1/struct.h:98-103]

This implementation might seem overly complex for someone not familiar with software

programming, but it actually displays a good coding style. The central valueMAXUSERSPERCHANNEL,

appears as a #define directive in a source code file which centralizes all such kind of config-

urable values (in this server version namedstruct.h). This value then is assigned to a

variable (maxusersperchannel in lower case letters), which keeps open the possibility

to implement mechanism which allows to change this value after the source code has been

compiled and linked into an executable program.

The source code reveals such a case, although it has not been enabled. Oikarinen made

a provision that the value of themaxusersperchannel variable could be set as startup

option of the IRC server. The IRC admin had to add for example the option ”-c 15”, to set the

channel limit to 15 users, which would override the value ofMAXUSERSPERCHANNEL. The

corresponding code looks like this:

74

4.2 Numbered Channels

Algorithm 5 Startup option (commented out) for maxusersperchannel
#ifdef never

case ’c’: maxusersperchannel = atoi(&argv[1][2]);
break;

#endif

Source: [irc2.1.1/ircd.c:100-104].

The first line indicates that this option is disabled. The second line beginning with case

assigns the given value to the variable, overriding the assignment from the directive value.

This is another indication that the complexity of the implementation show a good coding

style, as it allows for an easy addition of such a functionality (although, in this case, it has not

been activated).

Participants’ discussion and preliminary resolution

At some time in early 1990, a discussion in the then main IRC mailing list19 had set off

regarding the channel users’ restriction. The first mail found is already a reply by Oikarinen,

in which he explained the initial rationale behind the restriction, and presented an idea for a

(code-based) resolution:

From: jto@tolsun.oulu.fi (Jarkko Oikarinen)
To: irclist@tolsun.oulu.fi
Subject: Channel restrictions
Date: Mon, 21 May 90 13:24:32 +0300
[...]
>From: "Matt Crawford" <matt@oddjob.uchicago.edu>
>To: jto@tolsun.oulu.fi (Jarkko Oikarinen)
>Cc: irclist@tolsun.oulu.fi >
>I sent "yes restrictions", with an asterisk: More channels
>with unrestricted membership might be wanted, but I like
>having some channels limited in size. After a certain
>number of people jump in, the conversation often goes to
>hell.
> Crawd{d.
That’s true and that’s why restricted channels were invente d
in the first place... it would be nice if the number of users co uld
be limited dynamically, everytime a channel is created. 20

The discussion went on, with some supporting the restriction, others doubting its necessity.

Many offered alternative configurations such as:

How about upping the number of channels that allow more than 1 0 users.
Currently, channels 1-10 allow more than 10 users. How about making
it channels 1-100? Would that appease the people who want
unmanageable conversations? 21

The suggestions concentrated around alternative number range schemes for the limitation,

such as: "1-9 have no limit, 10-19 have a limit of 20, 20-29 a limit of 15, and the rest have a

19IRClist (1991)
20Oikarinen, Jarkko (1990-05-21)Channel restrictions. Mailing list IRClist (1991).
21Peterson, Jan L. (1990-05-21)Re: 10 users per channel restriction. Mailing list IRClist (1991).

75

4 «Code» Governance in IRC Channels

ten person limit."22, or ”Negative channels: no limit”, ”0 to 99: no limit”, ”100 to 999: limit

of 10 users”, ”1000 and above: no limit”23.

In the beginning of June 1990, Oikarinen called for a vote in the mailing list which resulted

in 17 voting for ’no limits’, and 16 (including Oikarinen) infavor of limits. In consequence,

Oikarinen gave what amounts to an ’official’ permission to lift the user limit restriction.

Results of ircvote regarding channel restriction removal:
17 - NO RESTRICTIONS
16 - YES RESTRICTIONS
So, from now on, people can remove the channel restrictions f rom their
servers. (Wasn’t that what we voted about ?) The next irc vers ion
won’t have the channel restriction enabled.
I think that the original call for votes wasn’t very clear, th ere
was at least one person who misunderstood and voted YES RESTR ICTIONS
even if he meant NO RESTRICTIONS. I hope that it was the only on e.
--Jarkko 24

This highlights the limit of power of one individual, already in this early phase of the IRC.

Although Oikarinen was the creator of the IRC, and and IRC administrator as well, he did

not force his opinion of let the channel restriction stay upon the others. While this could be

attributed to his personal integrity, the main reason is that even as the creator of the IRC, he

did not have absolute control over the decisions. IN case that he would have tried to force his

opinion, others would have made the changes without his consent, because of their access to

the source code. This is a scenario that is well known from other open source projects.

Another fact which may have eased the decision for Oikarinenis that he already worked on

a new structure of the channel situation, including the channel user limit:

Anyway, I think that it’s best if the channel restrictions ar e removed
now. Tolsun’s already running a test server with channel nam es as strings

and I’m trying to implement a system where first user joining a channel

gets it’s ’ownership’ and can change the limits and such as he /she likes. 25

The result of this effort is introduced in the next section (section 4.3.1), where the ”maximum

number of users” feature turns into a per-channel settable channel mode26.

22Pelletier, Mike (1990-05-21)Re: 10 users per channel restriction. Mailing list IRClist (1991).
23Khanna, Sanjay (1990-05-21) Re:Channel restrictions... Mailing list IRClist (1991).
24Oikarinen, Jarkko (1990-06-07)Results of ircvote. Mailing list IRClist (1991).
25Oikarinen, Jarkko (1990-06-07)Re: Results of ircvote. Mailing list IRClist (1991).
26As a side note, one could compare this development to Lessig’s account of the AOL chat (Lessig, 1999a,

pp.68-9). Here the limitation is set to 23 users in one ”chat room” (the AOL equivalent to an IRC channel).
What is interesting beyond the fact pointed out by Lessig that the code does set constraints is how differently
it is dealt with in the IRC. Because of its different ’code constitution’, both in open sourcing the code and in
the role of servers and the power of IRC admins inside the system, any one IRC administrator could change
the code, and if many were changing it, it would be automatically enforced. Even more, because the server
code is in the open source, anyone can start her own IRC server, either as single server-network, or creating
a new network with others. Today’s variety of hundreds of different IRC network is the result of this policy,
something certainly not possible in an environment described by Lessig.

76

4.3 Named Channels - a Major Change in «Code» Governance

4.3 Named Channels - a Major Change in «Code»

Governance

In the previous section I have described how the first design of channels constrained the

choice of the user to shape this main communication environment in the IRC: Numbered

channels gave only a preset choice of visibility in the IRC, and almost all channels were limited

to 10 concurrent members. In addition, using numbers do not have the same expressional

power as text names, and the channel topic did not fulfil this function well, since any channel

member could change it at any time.

The introduction ofnamed channels27 in late summer 199028 changed this and more. This

is the first and probably most influential «code» design change in the Internet Relay Chat.

Many code changes have be incorporated since, both to channels and the IRC design at large,

but nothing has impacted the IRC as deeply. This principal channel design still prevails today,

through all code versions and even new code bases29 of the different IRC networks.

This section examines the design and implementation changes as change in the «code»

governance, the constraints and opportunities for users regarding channels.

4.3.1 Names, modes, and the channel operator

The most obvious change is in the channel name. As the name implies, ”named” channels

have text identifiers instead of numbers. In order to distinguish them from commands, or

other text input, channel names are prepended with the hash character (’#’). While previously,

only one channel "33" existed, now any of ”#33”’, "#thirtythree", ”#thirty3” etc. is possible,

as well as any other alphanumeric text string30.

This change brought with it the necessity to decide on some policies to handle these new

names. Who was to create such names, or coordinated them? What about abandoned names

and channels? Such issues had somehow to be addressed.

The initial solution to these issues follows these principles or policies:

27Sometimes also called ”string channels”.
28The entire features described here were introduced in two steps, in server versions irc2.5+ (July 1990) and

irc2.5.1 (September 1990).
29I.e., server versions which were rewritten from scratch.
30Next to digits and alphabetic characters, a small set of other symbols is allowed.

77

4 «Code» Governance in IRC Channels

• Channel creation: Any user may at any time create new channels, just by entering into a

previously non-existing channel. There is no special command for the creation; issuing

a /join #channel command creates a new channel, if#channel does not exist

(otherwise the user simply enters the existing channel).

• First come-first serve: No provisions were made regarding any reservation or pre-

registration of channels. When a channel does not exist, i.e. a certain name is not

used by an existing channel, then any user can create a channel of that name.

• Channel end-of-life: As easy as the creation, as quick is the release of a channel (and its

name). As soon as the channel becomes empty, i.e. the last user has left the channel, the

channel ceases to exist, freeing the name to be used by any other user. This ’no-hold’

policy remains the basic «code» policy in all versions of theIRC server code. I will

show later on (chapter 6) how at first users, then IRC officialsused special programs –

bots and services – in order to change this basic policy towards other channel life and

control/ownership policies.

• Member in more than one channel: With numbered channels, a user could only be

member of one channel at a time. This limitation has been lifted with named channels,

allowing not only to join several channels at once, but also create more than one channel

at one time (and becoming member of all of these).

The elegance of this solution stems from the minimal changesin the use of channels. Chan-

nel creation and deletion are quite transparent, as they need no special command or other

mechanism. And even the first come-first serve policy appearsas a good idea, given the easy

handling of channels.

Besides these policies, two new features were introduced with named channels which depart

from the former policies of numbered channels in a big way: The introduction ofconfigurable

channel modesand the role of thechannel operator.

Channel modes

Each channel has some specific characteristics which shape the ways how it can be used. In

the case of numbered channels, these were the visibility (public, hidden, and secret channels)

bound to certain number ranges, and the limitation of the number of users in channels. Both

were fixed to the channel, so no user could change these characteristics for a channel; if users

needed different channel properties, they had to move to another channel.

Named channels introduced an entirely new system for channel properties. Instead of these

being fixed, channel modes for named channels were made configurable, and new properties

next to visibility and member limit introduced. Each of these channel modes can be individ-

78

4.3 Named Channels - a Major Change in «Code» Governance

ually changed for each channel, allowing to shape the channel according to the needs of the

members:

• Visibility: As in numbered channels, the appearance in the net-wide lists of channels and

list of users can be set with this mode. If set topublic, the channel as well as its members

appear in both lists; when set toprivate, the members are identified as in that channel,

but the channel does not appear in the channel list. Finally,with secretchannels, neither

channel nor members are listed31.

• Invite-Only: This mode allows to control the membership more tightly than it is possible

with the channel visibility. The IRC has a special command/invite which allows

any user to invite someone to a channel. This is a short text message which say that

’User A has invited me to channel X’. When the invite-only mode is set, then a user

must have an invitation for that channel in order to be able tojoin this channel. Users

without an invitation are rejected and cannot enter the channel.

• Moderated: Besides the ’invite-only’ entry control, this channel mode allows to restrict

active participation to specific users. All other users are limited to listen to (i.e., read)

the conversation.

Maximum number of users

In the previous section 4.2.3, I had shown how the numbered channels carried a hard-coded

property, allowing only at most 10 members in one channel, and how a discussion and vote

among IRC principals resulted in the revocation of that limit. At that time, Oikarinen already

hinted that this issue would be shortly resolved in a different way.

This resolution came in form of yet another channel mode:

• Maximum number of users: For each channel, a limit of users who may concurrently

use the channel can be set.

Instead of fixing the limit of the number of users to a certain range or set of channels, or

limiting them altogether, this property was madeuser configurableon a per-channel basis,

thereby overcoming the need to implement some fixed scheme, as in numbered channels, or

as suggested in the above shown discussion. Rather than either leave it fixed, or open it up

entirely, the functionality was deferred to the level wherean appropriate decision could be

made, to the level of individual channels.

31Somewhat confusingly, the terminology has changed from numbered channels: ”secret” named channels are
similar to the ”hidden” number channels, whereas the ”secret” numbered channels correspond to ”private”
named channels.

79

4 «Code» Governance in IRC Channels

Channel operator

With all these channel modes, who should have the power to change them? The answer to this

question comes in form of a new user role, thechannel operatoror shortchanop.

The assignment of a user to be a channel operator is automatic, and tightly connected to the

creation of a channel: The user who creates the new channel becomes the channel operator

for this channel. The policy governing the channel creationis extended to the assignment of

the operator role. And the lifetime of this assignment is limited to the lifetime of the channel:

As soon as the last user has left the channel empty, the channel operator assignment for that

channel removed; the next user who (re-)creates this channel then is assigned the new channel

operator.

A channel operator has absolute control over her channel. She can change any channel

modes to her liking. For example, when the channel is set toinvite-only, then only chanops

can issue invitations, and thus control who may and who may not enter the channel. With

moderatedchannels, only chanops can talk, all other members only can listen/read the con-

versation.

In addition, a chanop can decide (with yet another channel mode) may change the topic of

the channel:

• Topic: When set, only chanops may change the topic of the channel; otherwise, any

member can change it.

Two commands available to channel operators further underline the importance of this role

for a channel: The ability to exclude a user from the channel,and the ability to promote other

users to channel operator status:

• /kick command: This command allows chanops to exit any member off her channel.

This is an immediate exit from the channel with no long-term consequences. If no

entry limitations are activated, the kicked user can immediately reenter the channel.

The command resembles the/kill command available to IRC operators to exit a user

from the network32.

The/kick command complements the other means to control channel membership, visibility

and invite-only to control entrance, moderation to controlconversation.

Finally, another mode allows the channel operator to promote others chanop status:

• Chanop: This channel mode33 allows a chanop to promote other users to chanop status.

All chanops have exactly the same powers, so there is no difference between the chanop

32See below chapter 5.1
33This is not implemented as command, but as a channel mode, since it changes the status of the list of channel

operators as property of the channel.

80

4.3 Named Channels - a Major Change in «Code» Governance

who created the channel in the first place and the others who were promoted by the

initial chanop.

Basically, this creates a kind of ’two-class community’ inside a channel: those with, and those

without the chanop status. One can imagine a different hierarchy being formed in channels:

one chanop who absolutely rules over the channel; a small group of chanops sharing admin-

istrative tasks, or one where every user is a chanop. Since only chanops may talk when the

channel ismoderated, communication settings similar to a lecture (one chanop) or a panel

discussion (several chanops) are made possible as well.

On the other side, several introductory texts on IRC warn against giving chanop status to

too many or not-to-be trusted users. Apparently, there havebeen cases where one who created

a channel was demoted to user status by another channel operator, resulting in what is called

a ”channel takeover”. Later design changes, some of which are outlined later on34 have also

dealt with this problem.

4.3.2 «Code» Evolves – Further Changes in Channel Design

Although one could suspect that such a large change from numbered to named channels, in-

cluding the new channel modes, the role of the channel operator etc., would necessitate further

adjustments to cope with design weaknesses or changing environments, such as growing and

different usership, only few changes in the channel design can be found in subsequent IRC

server versions. The channel design as implemented with named channels has proven a viable

governance environment, basically remaining unchanged inover fifteen years.

Still, over the years there have been some changes made, mostly adding new channel modes

to alleviate some of the small shortcomings of the channel design. I will review the first three

changes made since introduction of named channels, as they show how those shortcomings in

the design where dealt with – by introducing new modes which broaden the actions available

to the channel operators. All three new channel modes were introduced with server version

irc2.8, released in March 1993, roughly two and a half years after the introduction of named

channels and associated channel modes.

Voice

Moderated channels (only chanops can speak in the channel) showed one problem: Everyone

who was to be given the opportunity to speak in a moderated channel had to be assigned

channel operator status. This certainly was no problem in channel which were created for the

sake of one conversation only, but in more established channels, giving channel operator status

to all who wanted to speak out was certainly not a good idea.

34See below chapter 6.

81

4 «Code» Governance in IRC Channels

Thevoicechannel mode is a logical consequence: It gives members in moderated channels

the ability to talk to that channel without being assigned channel operator powers. Therefore,

in such channels, both users ’with voice’ and chanops may speak, but the former have no

chanop powers, and the chanops are the only ones who can give or take voice status to users.

Key

The keychannel mode is another entry control facility in channels.When set, a user has to

provide the correct password (key) in order to enter the channel.

This feature expands the entry control mechanisms for channels. Before, visibility (obscure

the existence of the channel to outsiders) or invite-only (explicit one-time invitation must be

given out by chanop) has been available. Visibility is not effective for unwanted user who

have learned of the channel’s existence, and with invite-only channels, chanops have to give

out an invitation each time that a user wants to enter the channel.

Keys allow for multiple entries, instead of giving out invitations every time. And should

the key becomes known to an unwanted user, then only a key change is necessary, instead of

moving to another secret or hidden channel.

Ban

This is yet another expansion of the entry control facility,next to visibility, invite-only, and

keys. It allows the chanop to enter single users or groups of users into a channel ’ban list’,

who then are automatically denied entry to the channel. Thisfeature is the channel equivalent

of K-lines35 on the network level.

The implementation of the ban feature reveals another interesting «code» governance struc-

ture. In the initial implementation, there was no limit to the size of the channel ban list.

Chanops could add any number of user or user groups to the list. But the longer the list, the

longer it takes for the server to process a channel join request by a user, since the whole list

has to be searched for a possible match36. Apparently, the ban list feature has been extensively

used, because only two months after the introduction of channel bans, a limit of 20 bans per

list has been implemented into the code37. This limitation remains in all subsequent server

versions, although the number varies between 20 and 30 bans per list.

This is a small example of how «code» governance mechanism not only affect the social

setting, but also affect technical aspects such as efficiency, or scalability. Later chapters38 will

provide further examples where coders were confronted withsuch trade-off issues.

35See below chapter 5.2.
36The processing time is at its maximum for each non-banned user, because for those, the comparison has to

take place for each and every entry in the ban list.
37This limitation appears in server version irc2.8.9 (May 1993), asMAXBANdirective. Also introduced here is

the limit of the size of one ban entry to 1024 characters.
38Chapter 5.4.2 shows how the change in the design can lessen the computational cost of a governance feature;

chapter 8.1 discusses the costs imposed by choosing a technical architecture with specific constitutional
governance characteristics.

82

4.3 Named Channels - a Major Change in «Code» Governance

Summary – «Code» Governance in Channels

Channels are the main structure in the IRC, the most important one for users: Most of the

conversation takes place inside channels. They consist of achannel name, an optionaltopic

string, and a number ofchannel modeswhich determine how the channel can be used. This

structure is determined by the server code, and serves as basic constitution of channels.

The first design of channels werenumberedchannels: Names were numbers, and the chan-

nel modes – visibility and maximum number of users – were fixedto certain number ranges.

The next design,named channels, has become the constitutional structure of channels in

all subsequent IRC versions: Channels are given names (alphanumeric strings), and the chan-

nel modes can be set on a per-channel basis, with more modes available then in numbered

channels. The new role of the channel operator determines these modes as well as all aspects

regarding this channel. A user is assigned channel operatorstatus by creating a new channel.

Channels also are deleted automatically by the system as soon as the last user leaves it, thereby

also removing the channel operator status; any new user can now re-create this channel and

become the new channel operator.

In principle, this design has prevailed through all IRC server versions. Some additions in

form of new channel modes were made due to shortcomings, or the need for them due to

changing conditions; this chapter has introduced the ”voice” and ”key” modes as well as the

user ban functionality.

From the «code» governance perspective, several points canbe made:

CONSTITUTIONAL STRUCTURE: There exists a hierarchy of «code» rules, a kind of layers in

the design: On the top is the basic channel design, with its basic functionality, and its

name, topic, and channel modes. In this framework, the design of text names (named

channels) with configurable channel modes and the channel operator role were amended

early on, to form the constitution of all following server versions. Further changes did

not touch these principal structures, but changed details,such as new channel modes. It

appears that, similar to law, there is a hierarchy of «code» rules present.

RULES TYPES: Here, I try to identify instances of the rule types that wereintroduced above39.

The channel modes could be seen assubstantive rules: They allow or disallow cer-

tain conduct for users, such as entry denial on certain conditions (maximum number of

members reached, password protected etc.) or the ability tofind the channel or channel

members (visibility). In this course, the change from fixed modes to configurable modes

would be a change in thecontroller-selecting rule: In numbered channels, the coder and

the IRC admins were those who set these rules, and later on thechannel operator. This

39Chapter 2.3.2.

83

4 «Code» Governance in IRC Channels

is not only a change, but a deference down the hierarchy in thesocial roles: Not the

coders or admins, but the channel operators decide upon the channel modes, but limited

to their channel.

Channel creation and channel operator assignment is also acontroller-selectingrule,

as is the possibility for them to nominate others chanop as well. The problem with

the latter is the equal power that any channel operator holds, a weakness in thecon-

stitutiverule of channel operators: any chanop can take this status from other channel

operators—including the creator of the channel. At least with thevoicechannel mode,

this problem has been defused with regard to moderated channels. But the lack of a

graded chanop status system is a constitutive weakness.

The /kick command as well as the ban list areremedial rules, as they define the

type and amount of sanctions against users (channel exit or entry denial). The decision

here is made by those who apply these sanctions, are not put into the /kick or ban

list «code». Finally,procedural rules, are not implemented in «code»: In order to get

information to decide over sanctions, the chanop must be present in the channel to get

a first hand account about events. There are no built-in facilities which collect event

information.

Aside from these rule types, the «code» functions show some recurring patterns, found in

different contexts of the IRC. As they appear to be specific to«code» regulated settings, I

offer this as an important result of my thesis, under the label of «code» rule patterns:

FUNCTIONAL «CODE» RULE PATTERNS: Some of these patterns are on thefunctionallevel:

types of constraints of opportunities given to users in the IRC. Examples of such rule

patterns are the channel modes: the visibility as well as the’maximum users per chan-

nel’ property of numbered channels have beenfixed, allowing no changes by anyone,

neither user nor official. In named channels, thenconfigurablerule patterns appear:bi-

nary choices(invite-only, password protected, moderation),preset choices(visibility),

and those where a more or lessarbitrary valuecan be entered (maximum number of

users in channel). Binary choices appear to be a subcategoryof preset choices.

IMPLEMENTATION «CODE» RULE PATTERNS: Similar to functional ones, these are patterns

which recur in different context of the IRC; but in contrast to the former, implementation

patterns are specific shapes in source code: coding styles, or features of the program-

ming language, etc. An interesting case study in this regardis the implementation of the

”maximum number of users” property. On the functional level, this is a fixed constraint

84

4.3 Named Channels - a Major Change in «Code» Governance

of users; but on the implementational level, the coding shows a complexity which is in-

tended to offer flexibility in the configuration and expansion of the functionality to those

with access to the source code. For example, the number of users has been defined via

a #define directive, easily visible to those (normally IRC administrators) who configure

the source code; the definition of the range of unlimited channels in another #define

function is not as obvious, but still easily detectable.

A last point of this chapter will be further shown in other contexts as well:

FUNCTIONAL DIFFERENTIATION: The development of the channel modes shows how coders

respond to changing conditions or shortcomings with a successivefunctional differen-

tiation, offering new mechanisms rather than changing existing one. In general, there

is a tendency to rather open up new opportunities than implement further and stronger

constraints. Examples here are the introduction of the channel operator role and new

channel modes, as well as making existing one more flexible.

85

4 «Code» Governance in IRC Channels

86

5 Sanctions in the IRC

In any social situation, misbehavior and rule compliance are prevalent problems, and mecha-

nisms against such behavior are an integral part of the governance game. Consequently, the

Internet Relay Chat has devised mechanisms which cope with such problems. This chapter

examines some of those mechanisms that have been implemented as «code» rules.

Already in its first incarnations, the IRC included two mechanisms which allow IRC offi-

cials to sanction users by either exit them from, or deny thementry to the IRC network: the

/kill command available to IRC operators (section 5.1), and K-lines set by IRC admins

(section 5.2). I examine their functionality and implementation as well as their scope and lim-

its. In addition, I outline the various changes and additions to these sanctioning tools. They

reflect the continuous efforts to adapt to the changing environment such as the growth of users,

accompanied by the growth of IRC servers, admins, and operators.

Issuing K-line bans were for a long time the sole domain of IRCadministrators; IRC op-

erators only were allowed to issue/kills . Section 5.3 traces a function which bridges this

separation, allowing IRCopscontrolledaccess to K-lines.

Beyond these sanctioning tools, other means have been implemented in order to alleviate

the necessity to apply these sanctions. Section 5.4 examines two means, the delegation of

sanctioning mechanisms to the channel (operator) level, and user tools which avoid situations

where sanctions might become necessary.

This chapter touches a number of «code» governance issues:

• «Code» remedial rules1. /kill and K-lines give IRCops and admins a tool to deliver

a sanction, but do not implement some policy objectives (substantive rule). This means,

the decision of applying the sanctions are in decisional power of the issuer, and thus

subject to IRC social norms, outside the realm of the «code».

• Balance of powers.The/kill and K-line code reveals how coders and admins struggle

between giving IRCops power to manage the day-to-day duties, and at the same time

retaining control over their actions.

• Functional differentiation.The changes in the sanctioning tools show the development

of code towards a higher degree of differentiation, allowing for graduated sanctions.

1See above chapter 2.3.2.

87

5 Sanctions in the IRC

• Delegation. Sanctioning power is delegated by providing channel operators means to

sanction their’channel members, alleviating the necessity of sanctions.

• Non-sanctioning remedies. User commands allow to protect against some kinds of mis-

behavior, thereby diluting the necessity to turn to IRC officials to request sanctions.

5.1 The /kill Command – Immediate Sanction

The /kill command is the main sanctioning tool for IRC operators. It allows them to im-

mediately exit a user from the IRC network without recourse,but also with no long-term

consequences.

5.1.1 Functionality and Implementation

The functionality of/kill is quite simple. An IRC operator issues the command with the

nickname of a user who then is immediately disconnected fromthe IRC network.

The basic format for the command is

/kill user

whereuser identifies the user to be exited. Upon issuing the command, the user receives a

short notice, and then is immediately disconnected from theIRC server which she has been

connected to. Though no recourse is possible, the command does not have long-term conse-

quences: The user can immediately reconnect to the server:/kill does only disconnect, but

has no sanctioning ’memory’. This also means that only userswho are currently connected

can be exited. The/kill command does not allow to issue automatic exiting or entry denials

for past or future users.

The technical implementation is straight forward. The command activates the correspond-

ing functionm_kill() . This function first checks two conditions, then executes three ac-

tions. The conditions are:

• IRCop privilege: The command issuer must have IRC operator privileges.

• Existence: The to-be-exited user must currently exist in the network.

When these two conditions are fulfilled, the following actions are executed:

• Notices: A notice it send to the victim to inform her of the pending disconnection, and

the issuing IRC operator receives a acknowledgement of the successful/kill . Addition-

ally, all other operators are informed of the successful/kill execution. In case of an

error, an error message is sent back to the command issuer.

88

5.1 The /kill Command – Immediate Sanction

• Network state synchronization: A message is propagated to all IRC servers so that they

can update their network state by deleting the data entry of the exited user.

• Disconnection: On the server where the victim is directly connected to, theconnection

is severed, and thus the user exited from the IRC network.

Of some interest in the implementation are the notices. Not only the issuer and the victim are

informed, but also all other IRC operators receive a notice of every/kill issued in the entire

IRC network. This is an social norm-supporting «code» mechanism, and is examined in detail

below in chapter 7.3.

Such norm-supporting mechanisms are important, because the /kill mechanism does

not have any policies implemented, like for example the (hard-coded) ’maximum users per

channel’ rule2, where the substantial rule of ’only a maximum of 10 users mayconcurrently

use the channel’ is automatically enforced. With a/kill , issuing the command lies entirely

in the discretion of the IRC operator. The/kill command is an example for a «code»

remedial rule3, a rule which prescribes the ”nature and magnitude”4 of a sanction, but not its

substance, i.e. what situation triggers the sanction, likethe 10 users limit in the ’maximum

users per channel’ rule.

It does not follow from the remedial characteristic of the/kill command that it must be

free of any implemented limitations. At all times,/kills could be issued only by IRC oper-

ators5, and over the course of IRC server versions, further mechanisms have been introduced

which gave IRC admins – who give IRC operator status to users –choices to limit the scope

of the command.

5.1.2 Changes in the /kill command

The initial design of/kill did not have any limits other than the issuer had to be an IRC

operator. Any of the IRC operators could issue a/kill against any user in the network.

In the course of the IRC server versions, three different mechanisms were introduced which

changed the scope of the/kill command in different ways:local operators, the ability of

IRC admins to entirelyrevoke the /kill command privilege,andr to limit them toaffect only

local users.

Before I turn to each of these mechanisms, it is necessary to introduce the notion oflocality.

2See above chapter 4.2.3.
3Above chapter 2.3.2
4Ellickson (1991, p.133)
5An exception from this rule comes with the Uworld service; see below chapter 7.4.

89

5 Sanctions in the IRC

Server locality

Functionally, the IRC network presents itself to the users as a kind of ’virtual IRC server’:

Users should not be aware of how many servers form the network, or which user is connected

to which server etc. The specific structure of the network should be transparent to the user.

This is a goal of many distributed systems calledtransparency6.

In some cases though, this transparency is breached in orderto serve other purposes. Shap-

ing the scope of the/kill command is one such example, and is connected with the concept

of locality with regard to IRC servers.

i

Locality

A user (including IRC operators) is said to belocal with regard to an IRC server, when that

user has a direct Internet connection to that server. That is, all messages that the client

program of the user sends are received and processed by that server, and if necessary relayed

to other servers. The opposite is aremoteuser: All messages that a server receives from a

remote user are relayed by at least one other server in the network.

Local IRC operators (locop)

The first change was the introduction of a new role, that of alocal IRC operatoror locop. in

server version irc2.6.1 (July 1991).

The main difference between local operators and normal IRC operators is that the former

can only issue/kills that arelocal to the serverwhich authorizes them. If a local operator

is authorized by a server A, only users who are directly connected to server A can be dis-

connected by the locop, but not users local to any other server in the network. The power of

locops thus is confined to the local IRC server.

But for whatever reason, almost one year later, the/kill privilege for local operators had

been entirely revoked7 only to be reinstated after yet another year8. This reflects some dis-

agreements, assumedly among admins and coders, as to who should be given the power to

disconnect users from the network. This assumption is reinforced by the other two mecha-

nisms introduced in the same time span between 1992 and 1993.

Revoke /kill privilege

IRC version irc2.7.2c of May 1992 introduced another mechanism, this time the ability for

IRC admins to allow or revoke the ability to/kill users from both IRC operators and local

6Transparency thus is a goal for any distributed system. See for example Tanenbaum (1989, p.457) (”To the
extent that the [...] client cannot tell that the server is remote, the mechanism is said to betransparent”;
emphasis in source); see also ”Transparency (computing).”Wikipedia. 2005-04-16 http://en.wikipedia.org/
wiki/Transparency(computing).

7irc2.7.2 (May 1992)
8irc2.8.5 (April 1993)

90

5.1 The /kill Command – Immediate Sanction

operators for one’s own server. If the admin activated a #define directive9 calledOPER_KILL,

then the IRC operators on that server had the power to issue/kills . Otherwise, set to the

default behavior of the server code, IRCops were not allowedit (algorithm 6).

Algorithm 6 OPER_KILL directive
/ * OPER_KILL

*
* If you dont believe operators should be allowed to use the /KI LL command

* or believe it is uncessary for them to use it, then leave OPER_ KILL

* undefined. This will not affect other operators or servers i ssuing KILL

* commands however.

* /
#undef OPER_KILL

Source: [irc2.7.2c/include/config.h:165-172].

It it notable that thedefault settingfor OPER_KILL is todisallow operators to issue/kills .

IRC administrators had to explicitly allow it before when configuring the server source code,

hinting again at problems with the IRC operators’ use of/kills .

Limit /kill to local users

The third change came ten months after the introduction ofOPER_KILL, in server version

irc2.8 (March 1993). First, the default for that directive changed, so that the server would

allow /kills by default. Then another directive was introduced:LOCAL_KILLS_ONLY.

As the name implies, when activated, any operator on that server could only issue/kills

for local users, i.e. users connected to the same server thatauthorized the operator. By default

though, this restriction was not activated (algorithm 7).

Algorithm 7 LOCAL_KILLS_ONLY definition
/ * LOCAL_KILL_ONLY

*
* To be used, OPER_KILL must be defined.

* LOCAL_KILL_ONLY restricts KILLs to clients which are conne cted to the

* server the Operator is connected to (ie lets them deal with lo cal

* problem users or ’ghost’ clients

*
* NOTE: #define’ing this on an IRC net with servers which have a version

* earlier than 2.7 is prohibited. Such an action and subsequen t use

* of KILL for non-local clients should be punished by removal o f the

* server’s links (if only for ignoring this warning!).

* /
#undef LOCAL_KILL_ONLY

Source: [irc2.8/include/config.h:407-419].

Table 5.1 on the following page summarizes these changes of the /kill command. The

new mechanisms, introduced in the time frame of less than twoyears, hint toward some se-

rious problems regarding the use of the/kill command. Apparently, IRC administrators

9See above ”#define directive”, page 56

91

5 Sanctions in the IRC

demanded means to limit the power of IRC operators by either confining its scope to local

users, or to be able to altogether revoke this privilege. Whatever the causes, the «code» al-

lowed them to find ways to cope with the situation, by expanding the options available to the

IRC admin to control ’her’ local IRC operators. Chapter 7 examines further mechanisms to

control IRC operators’ actions. I R C o p e r a t o r L o c a l o p e r a t o rI n i t i a l d e s i g n C a n / k i l l a n y u s e r i n t h e n e t w o r k — Íi r c 2 . 6 . 1 (J u n e 1 9 9 2) I n t r o d u c t i o n o f l o c o p r o l e ; / k i l l sl i m i t e d t o l o c a l u s e r s o n l yi r c 2 . 7 . 2 (M a y 1 9 9 2) / k i l l p r i v i l e g e e n t i r e l y r e v o k e di r c 2 . 7 . 2 c (M a y 1 9 9 2) O P E R _ K I L L : / k i l l s a l l o w e d f o rl o c a l I R C o p s i f d e f i n e d .D e f a u l t : n o t d e f i n e di r c 2 . 8 (M a r c h 1 9 9 3) L O C A L _ K I L L S _ O N L Y : I f d e f i n e d ,I R C o p s c a n o n l y / k i l l l o c a l u s e r s .D e f a u l t : n o t d e f i n e di r c 2 . 8 . 5 (A p r i l 1 9 9 3) / k i l l p r i v i l e g e r e i n s t a t e d
Table 5.1: Changes in the/kill command code

5.2 The K-Line – Entry Denial Sanctions

K-lines allow IRC administrators to ban users for a longer period by denying them entry to the

server where the K-line has been issued. As such, they serve as a complement to the/kill

immediate exit sanction.

5.2.1 Functional description and technical implementatio n

With K-lines, IRC administrator can deny entry to the serverfor single users or user groups.

IRC admins issue K-line bans by adding configuration lines tothe IRC configuration file10.

A K-line is a text line which starts with the letter ”K”, and looks like this:

K: * .bu.edu::hoppie

In this example, the K-line affects those who connect from any host of thebu.edu (Boston

University) domain with the user namehoppie . Any user who fulfil these conditions are

denied entry to the server11.

10Chapter 3.2.3.2
11Entry denial is limited to the server where the K-line is activated. The user can still connect via another server

as long as she is not K-lined there as well.

92

5.2 The K-Line – Entry Denial Sanctions

The configuration file can hold any number of such lines. A K-line also is not limited

to one user, or one domain: Through the use of wildcard characters12, groups of users can

be K-lined: in the above example, users namedhoppie from any hostwhose name ends

with .bu.edu is denied entry. Similarly, some users from a host or domain could be (and

have been) excluded by inserting wildcard characters into the user string, such asho* for all

usernames beginning with ”ho”.

Since K-lines have to be written into the configuration file, only those who have write access

to that file can issue them13, which normally will be only the IRC administrator. Note that this

is not a limitation programmed into the IRC server, but a limitation of the ’environment’, the

access control of the file system of the host that the server runs on. It is possible that the IRC

admin give access to the configuration file to other individuals, independent of their user status

inside the IRC network.

The internal operation of K-lines is straight forward. Uponstartup of the server process, or

with a special command14, the K-lines are read into a linked list15.

When a connection request comes in, the user data (username and hostname) is checked

against all K-line entries in the linked list. In case of a match with a K-line, the connection

request is rejected, and the user cannot enter the IRC network through this server.

K-lines, like the/kill command, are an example for a «code»remedial rule. There are

no substantive conditions implemented; instead, IRC admins are free to issue K-lines as entry

denial as they see fit, and keep them as long as they deem necessary. The main inherent

limitation to the implementation is that a K-line is limitedto the server where it is issued.

Only if all servers in an IRC network have issued a K-line for aparticular user (or group), then

it adds up to a net wide ban16.

Before I turn to important changes and additions to K-lines made throughout the IRC ver-

sions, I like to highlight a peculiar duplication in functionality between K-lines and another

config line, the I-line.

K-lines and I-lines – Similarity in functionality, differe nce in intention

There exists another configuration line, the I-line, which offers the same functionality as the

K-line: Acceptance or rejection of a entry request by a user.Both config lines are also imple-

mented in the same way. The obvious question is: Why did the IRC coders choose to offer two

different configuration lines with the same functionality?The difference lies in the intention

12Wildcard characters are placeholders for parts of the string identifying the user, host or domain. In our
example, the asterisk in* .bu.edu is a wildcard character, with the whole string carrying the meaning:
any hostname which ends in.bu.edu . See for example ”Wildcard character.” Wikipedia. 2005-01-02
http://en.wikipedia.org/wiki/Wildcard_character (section ”Computing”) for further explanations.

13See below section 5.3 for a different interface to add K-lines to the file.
14/rehash , an IRC operator privileged command.
15See figure 4.2 for an example for a linked list.
16See also chapter 7.4.2.1 for a net-wide ban command,/gline .

93

5 Sanctions in the IRC

of each of these lines.

Algorithm 8 I-line
I: authorize clients to connect to your server. You can use d omains,
IP addresses, and asterisk wildcards. The second field can contain a
password that the client must use in order to be allowed to co nnect.
#
I: * .bu.edu:: * .bu.edu
I:128.197. * . * ::128.197. * . *
I:fenchurch.mit.edu:xyzzy:fenchurch.mit.edu

Source: [irc2.1.1/example.conf].

The I-line (algorithm 8) has been intended to determine thegeneral policyfor accepting

or rejecting users for the particular server, partly in coordination with the other servers in the

network. For example, the IRC administrators may have agreed to each limit their membership

according to the top level domain of the connecting users. Soone server sets its I-line to

deny entry to all users but those from the ”.com” domain, another may only allow those from

”.edu”, yet another those from ”.net” and ”.gov” domains, etc. Or, an IRC administrator might

manage two IRC servers, and decides to distribute the connecting users between these servers.

For example, the admin for the ”.com” domain might decide to direct all users of the domain

”aol.com” to one server, and the remaining ones to another server.

In this way, the admins express their specific user acceptance policies through the I-line

mechanism. K-lines on the other hand allow the IRC administrator to sanction users or user

groupsin additionto the general policy expressed by I-lines.

By separating these two uses, the IRC administrator can easier separate between the differ-

ences in intention: basic connection policies in I-lines, and user banishment in the K-lines.

Also, in the case that a user connection request is rejected,the server code can return the ap-

propriate reason for the rejection. The functional and technical duplication helps the admins

to express and manage the different user rejection policies. From this perspective, a seemingly

superfluous duplication serves an important governance means.

5.2.2 Config lines complementing K-line sanctioning

The K-line mechanism itself has changed only very little in the succession of IRC server

versions. Further development of the K-line functionalityrather came through the introduction

of additional config lines, two of which I present here: R-lines and D-lines complement K-

lines by offering a slightly different feature set for sanctioning users. These lines extend

K-lines in two different directions of the continuum between technical efficiency and «code»

functional breadth.

94

5.2 The K-Line – Entry Denial Sanctions

R-lines

An early addition to K-lines comes with server version irc2.5.1.bu.09 (Nov. 1990). TheR-

lines or ”restrict lines” work very similar to K-lines, denying entry to single users or user

groups (algorithm 9).

Algorithm 9 ”Restrict” configuration line (R-line)
Restrict lines
#
An extended form of K line. These look for a match and run an ou tside
program to whose reply determines whether the person shoul d be let on.
R:<host>:program:username
It is a good idea to use a full path name for the program. Depen ding on
the system, it might follow the instigator’s path or accept ~ and such,
but there are no guarantees.
The output of the program should be of the form
’Y <message>’ to let the user in, or
’N <message>’ to keep them out. In the case of ’N’ the message is sent
as an error message to the user. In the case of ’Y’ it is ignore d.
#
The following example means hrose@cs.bu.edu can only get i n if the
program /other/irc/bin/arbitrary does not return an ’N’.
R:cs.bu.edu:/other/irc/bin/arbitrary:hrose

Source: [irc2.5.1.bu.09/doc/example.conf:112-127].

The important difference to K-lines lies in the third field:

R:cs.bu.edu: /other/irc/bin/arbitrary:hrose.

Here, the IRC admin specifies an external program, in the example calledarbitrary , re-

siding in the folder/other/irc/bin/ on the server host.

If a user requesting a connection matches a R-line entry, theprogram is called with the

username and host as parameter, and has to return either a ”Y”or ”N”. If ”Y” is returned,

the server accepts the connection request, and the user is allowed to enter the IRC; when the

program returns ”N”, the user is rejected. Optionally, the program can return a message string

which the server forwards to the rejected user.

In this way, R-lines allow the IRC administrator to create programs with arbitrary criteria

for entry denial. According to a comment provided by the coder in the source code, the R-line

”allows more freedom to determine who is legal and who isn’t,for example machine load

considerations.”17 The freedom given is quite broad: For example, this program could base its

choice on an external blacklist, or even base its reply on weather data.

The practical limit given by the implementation is the processing time the program needs to

return a choice: Since the IRC server has to wait for an answer, it is blocked for that duration,

and can only resume processing other requests when the program has returned the answer.

Repeated waits could seriously affects the overall response time of the server which may lead

17[irc2.5.1.bu.09/ircd/s_conf:363-365]. Not the use of theterm ”legal” here; although one cannot speak of the
IRC constituting a legal system, the code is seen similar to law.

95

5 Sanctions in the IRC

to disruption of the whole IRC network, certainly an unacceptable condition. This might be

a reason why the use of R-line has been discouraged18. But despite this warning, R-lines are

available in all IRC versions of the EFnet and IRCnet; the Undernet has removed this feature

only recently19.

R-lines show interesting «code» governance properties. Here we see one of the few exam-

ples where «code» policy decisions are explicitly ’outsourced’ to a program external to the

server process. The coders have provided aninterfaceto the IRC server, to which the IRC

admin can attach programs enforcing arbitrary policies as she sees fit.

At the same time, the technical characteristics of the implementation exhibits an important

limitation: The longer the external program takes, the lessresponsive does the IRC server get,

and the larger the performance hit on the whole IRC network. One of the constant challenges

of coders and IRC admins is to keep the servers fast enough to cope with the demands arising

from the large (and growing) usership. Installing a R-line program which bogs down a server

might lead to the expulsion of the IRC server (and IRC admin) from the network. It therefore

can be assumed that programs for R-line checks never did muchmore than simple lookups or

matches against some filed data.

With R-lines, the breadth of possibilities offered by the external program feature is counter-

balanced by the technical efficiency demands of the server and network.

D-lines

D-lines20 as present in the EFnet hybrid server versions21 stand on the other side of the feature

vs. efficiency continuum from the R-lines. Here, performance issues have been the driving

force to implement them into the server code.

Again the basic functionality is similar to that of K-lines:deny entry to the IRC server. The

format of the D-line is given as follows22:

The difference between K-lines and D-lines lies in the ’position’ in the data processing of

the the user registration inside the server code. As described in chapter 3.2.2.2, the server

18See for example [irc2.8.17/doc/example.conf].
19From ircu2.10.10 (April 2000) on.
20Confusingly, other IRC networks have implemented D-lines to serve different purposes: The D-line in the

Undernet (ircu2.9.13, Nov. 1994) is called "connect rule" and allows IRC admins to specify under which
condition aserver-connect requestshould be allowed or denied, and therefore has nothing to do with user
entry denials. D-lines in the IRCnet, appearing in irc2.9.5(February 1998), serve as "auto connect restriction"
rule, allowing IRC admins to control the server-server connects. Both implementations of D-lines are not not
relevant to our discussion.

21D-lines appear first in EFnet server version hybrid-2 (April1997), but are not activated. hybrid-3 (June 1997)
is the first version where D-lines are activated (but can be deactivated with theD_LINES #define directive).

22Example from ircd-hybrid-5/doc/example.conf. Earlier versions don’t include this explanation, although the
functionality is implemented since ircd-hybrid-2.

96

5.3 Access to K-lines for IRC operators

Algorithm 10 ”Dump” configuration line (D-line)
D : dump. Dumps all connect attempts from the matched IP
without any procesing.
First arg is target IP mask, second is a comment.
D:208.148.84.3:bot host that changes domain names frequen tly
D:128.183. * :NASA users aren’t supposed to be on IRC

Source: [ircd-hybrid-5/doc/example.conf].

proceeds in four steps: request reception, parsing and dispatching, processing and responding,

and maintenance. In the case of a connection initiation by anIRC client, the request reception

step is preceded by an Internet connection initiation. Onlyafter this connection has been

established can the client send an IRC connection request.

The D-line check already occurs in this connection initiation step, before the client and

server exchange any IRC-related data. In this phase, the client is only identified by its IP ad-

dress (neither username nor hostname are available at that time). The server checks the D-lines

against the IP address, and in case of a match, immediately rejects the Internet connection.

In comparison, the K-line (and R-line) checking occurs longafter the Internet data con-

nection has been established: The client now has send an IRC user connection request. This

request goes through the reception, parse/dispatch, and processing steps, where finally the

available user data (username, hostname) are checked against the K-lines, and, the user re-

quest rejected (and the Internet connection severed).

Again, as with R-lines above, we can set the functional breadth against the technical ef-

ficiency. Contrary to R-lines, the D-line is functionally limited: only IP addresses can be

matched, so no rejection criteria based on username or host domain name are possible. On

the other hand, the D-line check takes much less time than a K-line check. The former occurs

almost immediately: as soon as the client initiates an Internet connection to the server, it is

already rejected (in case of a match). In contrast, a K-line rejection can occur only after the

Internet connection has been established, and an IRC connection request sent and processed

by the server.

5.3 Access to K-lines for IRC operators

The previous sections have introduced two complementing sanctioning means in the Inter-

net Relay Chat: the/kill command which exits a user from the network, issued by IRC

operators, and theK-line which rejects a user’s connection request to a server, issued by

IRC admins. The separation between the two mechanisms comesquite naturally: issuing an

immediate user exit from the network is easiest done from within the network, by a (privi-

leged) user, the IRC operator, which suggests the command interface. A long-term ban on

97

5 Sanctions in the IRC

the other hand needs to be saved between server restarts, so the configuration file mechanism

is a natural choice not the least because the IRC admin as highest-ranking official in the IRC

controls access to that file. This way, the hierarchy betweenIRC admin and IRC operator – the

former nominating the latter – is underlined by the separation between/kill – the ’weaker’

sanction –, and the K-line as more severe sanction, and if thestruggle reflected by the/kill

command «code» changes23 are any indication, this hierarchical relationship was notalways

a harmonic one.

But IRC admins face a dilemma: On one hand, the more power IRC operators hold, the

more duties can be delegated to them. On the other hand, more power means more potential

for abuse (as judged by the admin), and the necessity for morecontrol, diluting the usefulness

of delegation24. The mechanisms implemented to limit the scope of the/kill command –

local operator, revocation of the command, local users onlylimitation – might be interpreted

as «code» tools for admins to be able to reduce the costs involved with the delegation, for

example having to cope with complaints because of obsessive/kill use by one of her IRC

operators.

The following example –/klines – examines «code» mechanisms implemented to in-

crease the benefit side of delegation. The implementation ofthis command suggests that it

became necessary to apply more and more bans, so that some ways had to be found to allow

IRC operatorscontrolledaccess to K-Lines after all. As solution, a command interface to the

configuration file was implemented, serving the delegation objective in two ways: The IRC

operator is given a means to issue K-line bans from within theIRC; but due to the implemen-

tation specifics, this access is limited (command scope, exceptions) and controlled.

5.3.1 First experiment – Undernet’s /kline and /addline com mands

The Undernet was the first network to implement a command which allowed IRC operators

to access the configuration file. In Undernet server version ircu2.9.22 (August 1995), the IRC

operators had access to two commands:/kline , and/addline . Both allowed the IRC

operator toadd config lines to the configuration file (and to the config line linked list in the

running IRC server). The command format was:

/kline user
/addline linestring

23See above section 5.1.2.
24This dilemma is known as the principal-agent problem: ”The principal-agent problem arises when a principal

compensates an agent for performing certain acts which are useful to the principal and costly to the agent,
and where there are elements of the performance which are costly to observe.” (”Principal-agent problem.”
Wikipedia (2004-04-17) http://en.wikipedia.org/wiki/Principal-agent.). See also Richter and Furubotn (1999,
p.163)

98

5.3 Access to K-lines for IRC operators

The/kline command added K-lines, with further limitations: only one user at a time could

be K-lined (i.e., no wildcards25 were allowed), and the implementation required that the user

was a current user in the network in order to be/kline d. One could say that this/kline

implementation was similar to a/kill command, with the addition that the user also was

banned for a longer duration, instead of being able to immediately reconnect.

The second command was much more powerful: Any config line (including K-lines) could

be added to the configuration file, with arbitrary settings. No other limitation besides IRC

operator privilege and a superficial syntax check26 was implemented. For example, while

/kline was limited to one (existing user), no such limitation existed for /addline : any

kind of K-lines could be entered.

The ability to use these commands depended on the #define directive DYNAMIC_CONF,

which was activated by default (algorithm 11).

Algorithm 11 DYNAMIC_CONF directive (activate /kline and /addline commands)
/ * Define this if you want Operators to be able to add lines to irc d.conf

* WARNING: Do not use this if you have a large number of operator s, or

* if you do not trust everyone to add lines responsibly. These l ines

* are logged, but it’s smarter to not allow it unless you need it and

* can be sure it will be used responsibly. -Cym-

* /
#define DYNAMIC_CONF

Source: [ircu2.9.22/include/config.h:85-92].

The comment text shows that the coders were aware of the trade-offs associated with these

commands. On one hand, the commands let the admins delegate the task of applying K-

lines, or add other config lines, to IRC operators. On the other hand there was the potential

that IRCops abused their powers, giving admins extra work toresolve the resulting disputes.

I must also be considered here that many IRC admins do not knowtheir IRC operators in

person, but only from ’inside cyberspace’.

Further aspects of the implementation try to deal with theseconcerns: The command inter-

face to the configuration file is strictly limited toaddingconfig lines; there are no provisions

made which could either change or remove these lines. This also means that the added config

lines by themselves serve as a record of the actions by the IRCoperators. Together with a text

comment which included a time stamp and the nickname of the IRCop who added the line,

admins could review the action of their IRCops simply by checking on the added lines in the

config file. Command interface restriction and logging facility served here as control tool to

alleviate the trade-off between delegation benefits and control costs.

25See footnote in text accompanying the use of wildcards in K-lines in chapter 5.2.1 above.
26The function checked that the first character was a alphabetical letter, followed by a colon (the field separator

for config lines), which is the common syntax for configuration lines.

99

5 Sanctions in the IRC

In the Undernet, the/kline and /addline commands did not last long: Only seven

months later27, both commands were removed from the server code. Instead, the Undernet

introduced a whole new «code» concept for empowering IRC operators and implementing

control mechanisms: the UWorld service, which is examined below in chapter 7.4 and which

inter alia brings the ’ultimate’ sanctioning mechanism: the /gline command issuingnet

widebans.

5.3.2 /kline and exceptions in the EFnet

Either driven by the same needs, or adopting the idea of the Undernet coders28: Around the

same time that the Undernet experimented with an IRCops’ command interface to the config

file, the EFnet coders also implemented a/kline command29. Other EFnet server series

followed suit30.

In contrast to the Undernet implementation, the EFnet server version never introduced a

generic/addline command; only/kline is offered to IRCops.

The basic functionality is similar to the Undernet version,but some differences exist. The

most obvious one concerns the scope of the command: the EFnetversion allows IRC operators

to issue/kline using wildcard characters, therefore are not limited to issue /klines for

one specific user, but can target user groups. Also, targetedusers have not to be connected

to the IRC network at the time that a/kline is issued. Otherwise the functionality and

implementation is similar to the Undernet/kline command.

E-lines – exceptions from K-lines

Another new feature implemented in the EFnet creates an additional layer of ’control’ for

admins, next to to the limited command interface, and the logging facilities: The ability to

exclude users or user groups from being/klined by IRC operators.

E-lines are entered into the config file, therefore accessible only to admins, but not IRC

operators. The server source code offers a short explanation for this feature (algorithm 12).

The comment shows one possible use of E-lines: The IRC admin enters a K-line as a gen-

eral case (every user from the domain* netcom.com), and then provides exceptions from

27ircu2.9.30, March 1996.
28Given the timing, the +CSr series could even have been the first to implement/klines : /klines

appeared in the August 1995 Undernet server version; as for the +CS series, I have no exact date
when it was implemented, but the first +CS version came out in June 1995, the documentation
([irc2.8.21+CSr20/README.CS] suggests that the/kline has been changed in +CSr16 (December 1995),
pointing to an earlier first release for that feature.

29Beginning with one of the +CS versions prior to irc2.8.21+CSr20 (Jan 1996)
30Early +th versions and the hybrid series.

100

5.4 Beyond /kills and K-lines

Algorithm 12 ”Exception” configuration line (E-line)
/ * E_LINES - Define this if you wish to have lines that bypass

K: line checking...ie for example:
You want to K-line all of netcom.com except for

* cbehrens@ * netcom.com, use:
K: * netcom.com:: *
E: * netcom.com:: * cbehrens

* /
#define E_LINES

Source: ([irc2.8.21+CSr20/include/comstud.h:19-27]).

that case (users whose name match* cbehrens are exempted from the K-line). The con-

current introduction/kline and of E-lines suggests another use for E-lines: Admins enter

exceptions to K-lines, so that these users cannot be/klined by the IRC operators.

5.4 Beyond /kills and K-lines

In the previous section, I have examined a number of sanctioning instruments which allowed

IRC officials to cope with misbehaving users. These are examples of remedial «code» rules –

they define the quality and severity of sanctions, but the decisions over their application is left

to the officials who apply these sanctions. In this section, Iexamine two other «code» means

which do not give IRC admins or operators more sanctioning powers, but have the potential to

relieve them of the necessity of some sanctions.

In section 5.4.1, I set the channel environment into the context of sanctions: From this

perspective, the empowerment of channel operators can be seen as a delegation of powers to

lessen the necessity to issue /kills or K-lines. Section 5.4.2 describes how coders have reacted

to a specific kind of misbehavior – flooding – by giving the users a means to address the

problem. The initial design remedies the effects for the user, but does not address the side

effects, the load put on the network. A later redesign addresses both aspects, showing how

new ideas in design can overcome the technological challenges in «code» mechanisms.

5.4.1 Delegating sanctioning power – Channel modes, kicks a nd

bans

In chapter 4.3 above, I have introduced ”named channels” as the principal design of channels in

all IRC networks. This design includes a number of channel modes which shape the ways that

a channel can be used, including access rules and control over the conversation; the channel

operator who controls the channel, and some commands exclusively available to the channel

operator.

When we compare the channel and the network environment withregard to sanctions, it

101

5 Sanctions in the IRC

becomes clear that these two have very much in common; they almost are the equivalents on

the respective level of the IRC:

• User exit: The corresponding command for the/kill command is the/kick com-

mand available to channel operators, with exactly the same functionality on their respec-

tive level: to exit a user from the environment (network or channel). They even sport

very similar names which assumedly is no coincidence.

• Long term banishment: Whereas the K-line entry denial has been implemented from

the beginning on, channel-level bans were introduced lateron31. But both are meant to

banish users or user groups from the respective level. In thecase of K-line though, users

may still enter the network through a server which did not issue a K-line for them, while

the ban list blocks the only entry to a channel.

Shaping the IRC as a two-level environment32 with the introduction of named channels and the

accompanying «code» changes gave IRC officials an opportunity to defer authority down to

the level of channels, and give them «code» mechanisms to ”manage their common affairs”33,

under the ’shadow of’34 the IRC network officials.

This deference to a lower level strongly resembles the political science concept ofsub-

sidiarity35: The deference of authority to the lowest competent level ofauthority. By giving

users the power to manage their own channels, the IRC officials were relieved of having to

resolve all disputes between users. As we will see in the nextchapter 6, the tendency to give

channel operators a wider array of tools to shape the channelenvironment continued with the

introduction of registration services. The additional power for IRC operators to interfere in

channel operations in the Undernet through the UWorld service (chapter 7.4) indicates that

subsidiarity was not the only answer to solve the governancequandary in the IRC.

5.4.2 Non-Sanctioning «Code» Remedies

All instruments presented so far in this chapter has been created to give some officials – IRC

admins, IRC operators, and channel operators – instrumentsto dispense sanctions. The last

section presents an example where not officials, but the useris given a command to protect

31See chapter 4.3.2.
32It would not be correct to speak of layers here, since the distinction between network/server and channels is

more along the line of the ’inside’ vs. ’outside’ view of technology. For a similar argument, see Frischmann
(2003).

33See the governance definition, above p. 25.
34In legal scholarship, governance concepts which allow private regulation inside a legal framework (private

ordering) is sometimes referred to as ”in the shadow of the law”, in contrast to regulation outside any legal
framework (and control). See for example Lemley (1998, p.6).

35See for example ”Principle of subsidiarity.” Wikipedia. 2005-02-03 http://en.wikipedia.org/wiki/Principle_
of_subsidiarity.

102

5.4 Beyond /kills and K-lines

herself against a specific misbehavior. Such user-empowering means are well known in Inter-

net applications, such as filter against junk mail, or pop-upwindow blocking in web browsers.

Such means are not sanctions per se, but are implemented toavoid situations where the user

has to rely on officials’ action for remedies.

The example chosen protects IRC users against a specific typeof misbehavior called ”flood-

ing”:

«Flooding is the rapid repetition of words, symbols, ctcp commands or other contacts designed to

overpower a user and force a disconnection. This is called ’flooding someone off’. Not only is

this very annoying, but it also interferes with the workingsof [...] servers.»36

From early on, users were given a command block flooding by blocking all messages from

flooding users. But this early design – the/ignore command – did not help with the side-

effects, the load that a flood puts on the entire network by taking up bandwidth between, and

processing time in the servers. Much later on, a new design – the/silence command – was

introduced with the same functionality, but which also addressed the side-effects of flooding.

This small examples show how changes ’behind the scenes’, inthe technical implementa-

tion, has important influence on the governance impact of a command, even when the func-

tionality for the user does not change.

The /ignore command

the/ignore command allows users to block all messages from other users,to ’ignore’ them

altogether. This feature has been available from the onset of the IRC on.

Functionally, the command is issued to manage a list of userswho are to be ignored. She

can also limit this block to specific types of messages (only private messages, or only ctcp

messages37) (algorithm 13).

Algorithm 13 The /ignore command
/IGNORE [<nickname>|<user@host> [[-]<message type>]]

Suppresses output from the given people from your screen. IG NORE can
be set by nickname or by specifying a userid@hostname format . Wildcards
may be used in all formats. Output that can be ignored include s MSGs,
NOTICEs, PUBLIC messages, INVITEs, ALL or NONE. Preceding a type with a
"-" indicates removal of ignoring of that type of message.

Source: Pioch (1993).

The important technical aspect is that the command is implementedin the client program.

This means that/ignore is a feature of the IRC client, while the server is ignorant about

it. Factually, the user (i.e. the IRC client) helps herself to manage flooding by selectively

ignoring the incoming messages from the network.

36Kzoo and LadyDana (2001)
37See above chapter 3.1.1 for a short description of these message types.

103

5 Sanctions in the IRC

Internally, the IRC client holds a list of users whose messages are to be ignored. When the

client receives some data from the ’ignored’ user, it drops the data instead of displaying it to

the user. All message data still travels through the network, but is ignored at the destination

(figure 5.1).

Figure 5.1: Flood block with/ignore

Description: User/client z (on server B) tries to flood user/client b (on server K). But b has added
user z to her ignore block list, so user b does not see any of theflood data.
The flood data adds considerably to the system load for all servers in the path between z and b,
and this can lead to the disruption of the whole network. Whennetwork officials encounter such a
situation, it is regularly reason for a sanction (either a/kill or a K-line).

From the user perspective, the flooding problem is solved: The command gives her the abil-

ity to filter the flooding by ignoring messages from the offending users38. The client simply

drops all unwanted data. Also, the form that this filtering takes only depends on the implemen-

tation in the client program itself. More sophisticated filtering capabilities can be imagined39.

On the other hand, the side effect of flooding, a heightened server and network load is

not addressed at all. IRC officials still need to identify themisbehaving user, and then issue

sanctions against her.

The /silence command

In May 199440, the Undernet implemented a command into its servers which offers the same

functionality as the/ignore command, but differs in their technical implementation to cope

with the network load effects of flooding: the/silence command.

38Obviously, this command can be used in situations other thanflooding as well, where a user wishes to stop
messages from specific users.

39Such filtering is an ideal candidate for scripting facilities in the IRC client; see chapter 3.2.1.3 for a short
description of scripting in clients.

40ircu2.8.19.U.3.2

104

5.4 Beyond /kills and K-lines

From the user perspective, nothing changed41: The user calls the command with the offend-

ing user as parameter in order to stop receiving messages from her. Like/ignore , messages

from flooding users are therefore blocked.

The important difference to the/ignore command lies in the implementation details The

whole mechanism is handled by the servers. Instead of keeping the list of blocked users in

the client program, the silence mechanism keeps the lists onthe server side, that is at the local

server of the blocked user. If for example, userb blocks userz who is connected to a server

B, then the blocking liston serverB is updated (figure 5.2). Consequently, all messages that

userz on serverB sends to userb are already blocked by serverB, and do not travel over the

IRC network.

Figure 5.2: Flood block with/silence

Description: User z (connected through server B) tries to flood user b (connected through server
K). But because b issued the command/silence z, server B has user z in b’s silence block
list. Now server B blocks the the all data bound for b, and no flood data goes through the servers
connecting z with b.

The main advantage from the perspective of the IRC network isclear: The flooding is

stopped at its source, the server where the flooding user is connected to. IRC officials do

not have to act by themselves, because the user herself who has been flooded remedies the

situation by issuing a/silence command.

The technical cost of this feature lies in the checking mechanism: For every message, the

server has to match the sending user against the silence listof all recipients. In order to keep

this computing cost on the server side in check, the number ofusers who can be silenced is

limited to 15 entries in the silence list.
41Also, the/ignore command is still available to her.

105

5 Sanctions in the IRC

This trade-off between higher computing cost versus limiting flooding costs appears to have

been favorable for the Undernet, according to the creator ofthis command, Carlo Wood:

Carlo: Now the SILENCE command did strike even myself as a pretty brilliant solution if I may

say so ;) giving the solution to a problem that had existed for10 years: Make the problem of being

flooded the problem of the one that is BEING flooded - give him/her the means to do something

about it.

Carlo: Afterwards it looks very trivial :).42

From the perspective of «code» governance, this example shows how two mechanisms with

the same functionality, but differing technical implementation can have a different impact on

the governance situation of the system. This is an indication that the architecture, determined

by its functionalities and often put down in standards and protocols, does not provide the whole

governance picture of a system, but that changes in technical details can have an important

impact on the governance characteristics of a setting43.

Summary – Sanctioning in the IRC

Sanctioning is an important issue in any social setting. It therefore is no surprise that a number

of rule types are apparent in the «code».

From the onset on, the Internet Relay Chat had two mechanismsimplemented: The ability

to exit users from the network (/kill command), and to issue long-term bans (K-line). Both

are an example of «code»remedial rules: They define the amount of sanctions given, but do

not specify when the sanction has to be issued.

As principal design, a separation of power had been upheld which is ancontroller-selecting

rule: while the immediate exit command has generally been available to IRC operators, IRC

admins did reserve the right to issue bans for themselves.

As certain times, the server code changed theconstitutive rulesof IRC operators, or let the

admins decide about changing them: by adding a limited operator role (local operator), restrict

/kills to server-local users, or even denying local operators its use altogether. On the other

42Undernet-User-Committee (1997b)
43Another interesting aspect is the positioning of the technical functionality in the system. While the/ignore

command positions its functionat the endof the system — in the client —, the/silence mechanism is
positioned in the servers itself. This is an example for an ’exception’ from the end-to-end argument discussed
in the Internet governance literature (Saltzer et al. (1984); van Schewick (2004)). In short, this argument con-
cerns the placement of functionalities in a multi-layered system, arguing for placing these functions towards
the endpoints of the system, i.e. towards the user (see van Schewick (2004, pp.87-107) for an extended
analysis of the argument). The ’exception’, or rather trade-off then lies in line with the argument made by
the original authors that the end-to-end argument ”provides a basis for discussion and analysis of trade-offs”
rather than ”solving the design problem” (Reed et al., 1998). Since the IRC is not strictly a multi-layered
system, further work is needed to examine how the end-to-endargument can be applied to applications like
the IRC.

106

5.4 Beyond /kills and K-lines

hand, the later addition of the/kline command, allowing IRC operators toaddK-lines, is

indication of the necessity to expand their power, albeit ina controlled way (only additions of

lines).

With K-lines, the prevalent issues were the expansion of thefunctionality of bans. Next

to the intentional separation of functionally equivalent mechanisms (I-line vs. K-line), fur-

ther config lines expanded the functionality: R-lines allowing arbitrary condition checks (and

thereforesubstantive «code» rulesto be implemented) for rejection, but at the cost of slow-

ing down the server process, and D-line allowing a very fast rejection, but only based on IP

addresses.

Finally, deferring power to sanction down the hierarchy (tothe channel or user) was in-

stituted to allow lesser sanctions at a more appropriate place: /kicks and bans out of a

channel, and/ignore or /silence other users. This is acontroller-selectingprinciple

which resembles the subsidiarity rule in political science.

From the «code» governance perspective, a number of topics were touched:

INTERFACES: Sanctioning mechanisms and features explored in this chapter were accessible

through different interfaces with different characteristics. The file interface, exemplified

by the configuration file, offers easy access to the IRC admin,but is inaccessible to

others, unless another interface is created, like the/kline command interface. The

latter has been used to implement control mechanisms: limiting access to the file (only

adding K-lines), and automatically add further information (added when and by whom).

Also, the R-line example shows the widening of the K-line functionality by creating an

programinterface: the server explicitly starts that program to receive its judgment about

acceptance or rejection of a user connection request.

IMPLEMENTATION VS. FUNCTIONALITY : The R-line interface also showed a specific char-

acteristic often encountered: the trade-off between arbitrary condition and computing

cost. The more refined the functional capabilities of a feature, the more costly it may

be to execute it. On the other hand, the example of the/ignore vs. /silence com-

mand shows that new ideas in code design and implementation can benefit both overall

technical efficiency and increased functionality.

DEFERENCE: Although the IRC is a self-governed setting where no external regulating force

is present, this does not mean that there is no hierarchy among the principals of the

setting. The limitation efforts of the/kill command show the struggle of IRC admin

how much power the IRC operators should be given. But the other case has also be

shown: the/kline command gave them powers previously reserved to IRC admins.

While this might be not considered as deference, the empowerment of channel operator

107

5 Sanctions in the IRC

to issue/kicks and bans, and of the user to/ignore or /silence are examples

how principals on lower levels are given means to address unacceptable behavior by

others. «Code» allows to design such mechanisms, as well as create additional roles

(local operator), in order to shape the social setting.

RULE TYPES: These points can also be interpreted in the context of the rule types: In the

case of the interfaces, the file vs. command interface pointsto a controller-selecting

rule; /kline changes this rule, but formulates the constitutive rule of limited access

and implements a procedural rule by recording time and issuer (logging). The program

interface of the R-line allows the IRC admin to externalize substantive rules into the

program, much easier changeable for the admin than changingthe server source code

itself, but at the price of increased computing cost.

The computing cost might be interpreted here (R-line) as constitutive rules for admins,

limiting their ability to implement costly checking procedures, rules which can quickly

change when the means are found to lower this cost.

Finally, deference is the empowerment of controllers down the social hierarchy, a controller-

selecting rule. Software seems to be a well-suited tool to decentralize power to a certain

extent, a tendency that was already present in the previous chapter on channel manage-

ment.

108

6 Nickname and Channel Ownership

There are two classes of identifiers which are unique inside an IRC network: Nicknames, by

which every IRC user is identified inside the network, and channel names. The examination

of these identifiers in the IRC provides an interesting case study on how the IRC networks use

«code» to shape the policies regarding the control ("ownership") over nicknames and channel

names. I will trace how the IRC networks have treated the issue of ownership of nicknames

and channel names, mainly by means of «code».

Section 6.1 gives a basic description of nicknames and channel names, together with the

policy in the first IRC network, the Onet. Their policy was a first-come first-serve, paired with

a ’no-hold’ policy: as soon as a name was not used anymore, anyone could take that name and

use it.

Apparently, the need for a longer-term hold over names aroseover the time. As section 6.2

shows, this was first accomplished by tapping into the potential of the client-server protocol of

the IRC: So-calledbotswere created which automatically hold the names for the user, thereby

effectively circumventing the no-hold policy.

Probably as reaction to such bots, some IRC networks createdofficial services offering some

kind of name registration and reservation. The examinationof channel registration services

in two different IRC networks in section 6.3 shows how «code»enabled these networks to

express and enforce different policies through their respective implementation: either as own-

ership policy with no conditions attached, or as a temporarycontrol bound to an elaborated

registration process, and various conditions for the use ofthe service.

From the «code» governance perspective, it is notable how «code» enables the participants

to express their specific policy views: Bots help users to shape their own environment, over-

riding the default policies of the network. The channel registration services show how «code»

makes it possible to design and enforce a fine-tuned ’ownership’ policy apart from a simple

choice between absolute control over a name, or a ’no-control’ policy.

109

6 Nickname and Channel Ownership

6.1 Nicknames, Channel Names, and Early Ownership

Policies

This section explains the characteristics of nicknames andchannel names, together with the

initial ’ownership’ policies in the early IRC network.

6.1.1 Nicknames

Nicknames serve as pseudonyms for IRC users, identifying them inside the network: In chan-

nels, each text line is prepended with the nickname of the sender; users address private mes-

sages to others via nicknames, and other commands take nicknames as parameter, e.g. the

/whois command which returns user information for a given nickname.

Every user has to choose a nickname for herself when enteringthe IRC network1. The

system ensures that the nickname is unique: If the provided nickname is already used, the user

has to provide alternative names until a unique one can be assigned to her; only then can the

user enter the network.

Once granted entry into the IRC, the system allows users to change the nickname at any time

(provided that the new one is unique as well). Each nick change is notified to all members of

the channels the user is on, so that no confusion arises on theidentity of the user with the

changed nickname. Such nick changes are often used to express a mood or other sentiments.

Not all users choose to change nicknames. Specifically, wellknown people in the IRC

identify themselves through nicknames: the original creator of the IRC, Jarkko Oikarinen, for

example is known as ”WiZ” in the IRC.

Technical implementation

Internally in the server, a linked list2 holds a data entry for each user in the entire network. This

entry contains the actual nickname, as well as user-/hostname from which she connects, and

other related information. As with other IRC state data, this linked list is kept synchronized

between all servers. When a new nickname is chosen by some user (on entry, or nick change),

this linked list is consulted to check for a possible nickname clash.

From this implementation follows that nicknames are only unique among IRC servers which

are interconnected to form an IRC network. Therefore a nickname taken in one network may

be free in another one.

Nicknames themselves consist of a combination of letters, digits plus a few other symbols3,

1See also above chapter 3.1.1.
2See above figure 4.2 on page 71 for an example of a linked list.
3For example, [irc2.8.21/ircd/s_user.c:218-222] defines the allowed characters range as:

** Nickname characters are in range

** ’A’..’}’, ’_’, ’-’, ’0’..’9’

** anything outside the above set will terminate nickname.

110

6.1 Nicknames, Channel Names, and Early Ownership Policies

and are limited to a maximum of nine characters in most networks4. This amounts to some 50

quadrillion (a 5 followed by 16 zeroes) combinations5, but as often the case with such kind of

identifiers, there are much fewer ’interesting’ combination, like existing words

or names6.

Initial nickname policies

In the initial IRC network, the Onet, the possibility of disputes over names have apparently

not shaped the nickname policies. Rather, simple considerations (such as probable confusion

when two users are identified by the same nick) must have guided the implementation. The

policy has three cornerstones:

UNIQUENESS – As mentioned above, only one member of a network can use a specific nick-

name at a time. From the functional perspective this is certainly what a user would

expect. Technically though it is not a strict necessity for the implementation, but this

condition simplifies the technical design of handling usersin the server7. An attempt to

register to an already used nickname is called anickname collision.

FIRST COME-FIRST SERVE – Anyone is may use any currently unused nickname at any time.

This policy comes quasi ’naturally’ with the technical design: The server-internal user

list only holds the used nicknames. And in order to fulfil the uniqueness condition, this

list is searched for a match with a new nickname, accepted when no match has been

found. Any other policy would require additional code.

NO HOLD – As soon as the user leaves the IRC network or changes to a new nickname, the

old one is released and can be taken by any other user. Only theused nickname is

bound to the user, and only for the duration of its use. Again,this is a side-effect of the

technical design: when a user exits the network, the internal user entry is deleted, and

the nickname thus ’forgotten’; with a nick change, the old name is overwritten by the

new one.

** In addition, the first character cannot be ’-’

** or a Digit.

4A notable difference here is DALnet, which allows a maximal length of 30 characters.
562 choices (’A’ to ’}’ and ’_’) on the first position, and 73 (62plus ’-’ and the ten digits) on each of the

following eight positions equals62 ∗ 73
8
≈ 5 ∗ 10

16 different names.
6The probably best-known fight surrounding ’interesting’ identifiers concerns the Internet domain names.

For a comprehensive source about this controversy see http://www.icannwatch.org/ (which by the way is
organized similar to the IRC, as unincorporated, volunteereffort based on open source software: http:
//www.icannwatch.org/about_us.shtml, 2004-04-18).

7For one thing, the nickname suffices to uniquely identify a user; otherwise other data, such as the user-
/hostname from which the user client connects had to be provided, or an internal unique identifier defined
and implemented.

111

6 Nickname and Channel Ownership

In the server code, this basic policy has been principally unchanged in all server versions, and

the EFnet has until recently upheld it as only policy. Other networks have changed their policy

regarding nicknames, but not through server code changes, but through the use of services;

section 6.2.2 below presents an example for a nickname service.

6.1.2 Channel names

The subject of channels, including their names, have been examined in detail in the previous

chapter 4. Here I will only repeat the points that are important for the discussion of channel

names, which is quite similar to the treatment of nick names.

Channel names identify channels in the IRC network. Like nicknames, they can consist of

a combination of letters, digits plus some symbols. The nameof a channel is chosen when

created: the first user who joins a channel with an unused namecreates that channel (and the

user becomes channel operator of the channel). In contrast to nicknames though, a channel

name cannot be changed after its creation. But as it is easy tocreate another channel, and then

notify all users to move to the new one, this is not a serious limitation.

Technical Aspects

Similar to the user linked list, servers internally maintain a channel linked list with each entry

representing a channel in the IRC network; the channel name is one value in this entry. And

similar to nicknames, a channel name taken in one network maybe free to take in other

networks.

Initial channel name policies

Similarity of shape and implementation between nicknames and channel names continues in

the initial policies:

UNIQUENESS – Channel names have to be unique in a network.

FIRST COME-FIRST SERVE – The first one to use a name holds it as long as the channel exists.

The specific design of channel creation though shows one difference to nick names:

Channels are created in the same way that one enters the channel: the command/join

#channel creates the channel if it does not exist yet in the network; otherwise, the user

simply enters the existing channel. Therefore users will never encounter the rejection

of a channel creation due to a name clash, as can happen when a user changes her

nickname.

NO HOLD – The channel does only exist as long as at least one user is inside it8. But as soon

as the last user has left, the channel ceases to exist. Any user now can (re-)create this

8This does not necessarily be the channel operator; any user is fine.

112

6.2 Policy Changes With Bots and Services

channel, and thus becomes the new channel operator.

The most controversial channel policy is the last one. For some kinds of channel usage patterns

– when it is used for a quick chat – this policy might have been sufficient. But early in the

IRC, stable communities formed around channels with specific names9. For these groups,

the policies were in no way optimal: They had to ensure that atall times at least one of

the members stayed in the channel, otherwise someone else might take the channel name,

threatening to displace or even destroy the channel community.

Changes of the policies came from two sides: Users gained themeans to circumvent these

policies with the help ofIRC user bots, shaping their own channel environment independently

of the network policies; and some networks implemented new policies, mainly with the help

of IRC services.

6.2 Policy Changes With Bots and Services

Users began early to look for means to change the policies of nicknames and channels. Es-

pecially with channels, users employed so-calleduser bots, programs which stay around the

clock in an IRC network to fulfil some tasks, such as to keep thechannel from being deleted

if the last user leaves it.

Similarly, some IRC admins administered aIRC service bot(a kind of admin-run bot) which

offered an modest version of nickname reservation: it kindly asked users to release nicknames

which were reserved by another user.

Both examples show an important principle in an environmentthat the IRC constitutes: the

possibility to run programs which are not part of the server network, but attach to one of its

interfaces to offer some services not provided by the network itself. And as the IRC client-

server protocol constitutes such an interface, simple IRC users can set up such programs (bots)

and change the official network policies.

6.2.1 Channel Control with the Eggdrop user bot

«IRC bots are particularly important on IRC networks without channel registration services, such

as EFnet and IRCnet, and on networks that may prevent your channel being registered due to

certain registration requirements, such as Undernet. On these networks, keeping a channel running

smoothly without some kind of IRC bot would often be impossible.»10

Bots can be called an ’all-purpose automated IRC client server’. Like a server, they run 24

hours a day. Like an IRC client, they connect to an IRC network, so from the network side

9A very interesting account on a channel community in the early 1990s, see Lawrie (2005) and other web pages
on the #gb channel website (http://uknet.com/gb/).

10http://www.egghelp.org/whatis.htm (2003-05-16).

113

6 Nickname and Channel Ownership

they appear as a user/client. They are automated, because they are set up to fulfil automated

tasks (scripts) on behalf of the user. And they are ’all-purpose’, because they can be freely

programmed to do anything that a bot coder (often the user herself) is able to implement.

To give an impression of what a user bot is, I first outline the installation and setup process

for a popular IRC user bot namedEggdrop; this shows the technical similarity of bots and IRC

servers. Both are to be configured in source code as well as through a configuration file; both

run as a server, waiting for incoming requests to be processed.

I show how such a user bot helps to hold a channel, and providesother channel management

tools.

Eggdrop – Installation, configuration, basic usage

The main web site offers the following ”short short version”for the set up of the Eggdrop IRC

bot11:

1) Download eggdrop1.6.17.tar.gz from the eggheads ftp.

2) Telnet and FTP to the shell.

3) Upload eggdrop1.6.17.tar.gz via FTP.

4) In telnet type tar zxvf eggdrop1.6.17.tar.gz

5) Type cd eggdrop1.6.17

6) Type ./configure

7) Type make config(compiles all modules) or make iconfig(allows you to select the modules to compile).

8) Type make

9) Type make install DEST=/home/name/botdir

10) Switch to the botdir and edit the sample config file eggdrop.conf, then rename it to something appropriate

(e.g. botnick.conf).

11) Type ./eggdrop -m <config file>

Figure 6.1: Steps to Set Up an Eggdrop Bot

Step 1) to 9) concerns the installation of the Eggdrop, and isbasically the same procedure as

outlined for IRC servers12:

• In steps 1) to 5), the version is chosen, downloaded, and the source code packages

unpacked at the appropriate location in the file system13.

• Steps 6) runs the automatic source code configuration scriptsetting up the needed tools

to compile and link the program. Here, the user could also make direct source code

11http://www.egghelp.org/setup.htm (2005-04-19)
12See above chapter 3.2.3.1.
13Actually, the description assumes that the host where the Eggdrop will run is not the same as the host where

the installing user is working, which leads to step 2) (the ”shell” denotes the shell program of the host where
Eggdrop will run) and the uploading and ’telnetting’ in steps 3) and 4). Running Eggdrop on another host
is necessary when ”clones” (multiple IRC client connections from one host) are not allowed on the network:
see below chapter 7.4.2.2.

114

6.2 Policy Changes With Bots and Services

changes. Additionally, source code patches and so-called ”modules” are offered through

the web site which modify Eggdrop in specific ways14.

• Step 7) to 9) then compiles and links the program, and installs it to the given place in

the file system.

In step 10), the main configuration of the Eggdrop takes place. This is similar to the configura-

tion of the IRC server through the config file, editing the configuration lines (chapter 3.2.3.2).

Eggdrop features more than 170 configuration options, grouped in 25 categories, from ”basic

settings”, ”files and directories”, ”log files” to the configuration single modules, one of the the

”irc module”. Examples for such settings are shown in algorithm 14.

Algorithm 14 Eggdrop configuration lines (examples)
What is your network?

0 = EFnet# 1 = IRCnet

2 = Undernet

3 = DALnet

4 = +e/+I/max-modes 20 Hybrid

5 = Others

set net-type 0

Set the nick the bot uses on IRC, and on the botnet unless you s pecify a

separate botnet-nick, here.

set nick "Lamestbot"

Set the alternative nick which the bot uses on IRC if the nick specified

by ’set nick’ is unavailable. All ’?’ characters will be rep laced by random

numbers.
set altnick "Llamab?t"

Source: File [eggdrop1.6.17/eggdrop.conf]. (Lines beginning with a hash mark (’#’) are comment
lines)

This example shows three settings. The first,net-type , lets the Eggdrop know which

network it is connected to, in order to use features and commands which are specific to the

respective IRC network. The second setting,nick , provides the nickname of the user bot in

the network. As this nickname may be already taken, the thirdsetting,altnick , provides

a mechanism to automatically search for an unused nick, as described in the accompanying

comment.

The last step 11) finally starts the Eggdrop bot which connects to the preset IRC network

(also to be provided in the configuration file), and awaits commands from the user.

Using Eggdrop to secure a channel

In tune with our discussion of channel policies, I concentrate here on the channel-related

features of the Eggdrop.

14See http://www.egghelp.org/files.htm (2005-04-19), sections ”Patches” and ”Modules”.

115

6 Nickname and Channel Ownership

In order to issue commands to the Eggdrop, the user interactswith the user bot through

the DCC feature15. The first step to secure a channel is to let Eggdrop join the channel in

question. For this, the user issues the command.+chan #channel. Once joined, Eggdrop

stays in the channel until the user directs the user bot to leave the channel, or some external

conditions arise16. Eggdrop joining the channel alone effectively circumvents the ”no-hold”

channel policy: When the last user leaves the channel, the user bot still stays in the channel,

so that the channel is not deleted in the IRC network.

The Eggdrop offers further channel related features: When Eggdrop is made channel opera-

tor, it can be directed to execute a broad selection of channel management tasks: keep a set of

channel modes even when other channel operators change them; maintain a list of users who

are automatically banned from the channel as soon as they enter (banlist); automatically give

(auto-op) or take (auto-deop) specified users channel operator status upon joining the channel,

etc. All these settings can also be preserved (i.e. are present when the Eggdrop is quit, and

later restarted) by entering them into the Eggdrop configuration file.

In this way, the Eggdrop bot (and other user bots as well) offers many channel-related

features which may not be available per se from the IRC network.

Bots in the IRC

This section has barely touched the features and capabilities offered by bots. Already this short

examination has shown how the power that a user can exercise through bots is a very important

point in the IRC «code» governance: Users, without being an IRC operator, administrator, or

coder, can change the «code»-implemented policies set by the IRC network17, and in this way

also actively ’voice’ their opinions and concerns over policy choices of the IRC network.

6.2.2 The NickServ service bot

The second example for early ’ownership’ policies via «code» introduces a concept similar

to bots: IRC services18. Like bots, they are single programs which connect to an IRC server

in order to provide their service. But unlike IRC bots, they do not connect to the network as

an IRC client, but as an IRC server19. This has the advantage that the IRC service receives

all messages sent between the servers (especially those which synchronize the internal IRC

network state); also, when the service sends requests to other servers, no authorization has to

15Direct connection between clients, but initiated over the IRC network; see above chapter 3.1.1.3.
16Such conditions include stopping the Eggdrop process, or disconnection of Eggdrop from the IRC server.
17This may be one of the reasons why many IRC servers actively prohibit the connection of bots (see for exam-

ple Paulsen and Fleckenstein (1997)), and sometimes even have implemented sophisticated ”bot-detection”
routines to enforce the user bot prohibition.

18See also above chapter 3.2.1.4 for a short introduction to services.
19In some implementation, a special ’IRC service’ category has been introduced into the server code in order to

separate them from IRC clients and IRC servers.

116

6.2 Policy Changes With Bots and Services

be provided as it is treated as a server.

This section introduces an early service installed in orderto cope with the nickname ’own-

ership’ problem. TheNickServservice was created by Armin Gruner and Anton Hartl in July

199020 (one of them also administering an IRC server21), and existed until around 1993-1994

as "NickServ@services.de". Unfortunately, I have found nosource code version of the ser-

vice, so that the following description relies on second hand information in documents and

mailing list messages.

Functional description

The NickServ was quite non-intrusive: Users could registera nickname by sending a private

message22 to NickServ. When another user used the registered nickname, the NickServ would

send a warning to that user that the nickname has been registered with NickServ:

-NickServ- --- ----------------------
-NickServ- ! Attention - Nickname "Yurik" is already alloca ted by
-NickServ- ! vuong@mips1.info.uqam.ca (The Roaming Soul) .
-NickServ- ! This may cause some confusion. Please choose an other nickname.
-NickServ- ! If you are the real Yurik, but you are logged into a different
-NickServ- ! computer, you should use the ACCESS command to t ell NickServ
-NickServ- ! about this. Type /msg NickServ@service.de hel p ACCESS.

-NickServ- --- ---------------------- 23

The user was free to ignore these messages; the NickServ did not enforce any ownership

claims over nicknames, but instead served as a kind of ’friendly reminder’ service.

Technical description

Although I have no source code available, the functional working suggests the following de-

sign24: When a user connects to the IRC network, or changes her nickname, a message is sent

to all IRC servers informing them of this change. Having a server status in the network, the

NickServ received these messages as well, and checked the new nickname against the list of

registered nicks. In case of a match, the warning shown abovewas issued to the user.

Governance issues

Many EFnet users apparently enjoyed the service, leading toover one thousand registered

nicks (at a time where users where counted in the hundreds25). But although coded as an

informationalmechanism rather than one enforcing some kind of nickname ownership, there

were disagreements about that service.

20Hartl, Anton (1990-07-31)IRC Service Proposal. Mailing list IRClist (1991)
21One of the maintainers of NickServ, Armin Gruner, has been anIRC administrator (http://irc.leo.org/irc_leo_

org_de.html (23 Jan 2005)), contributed to various server code versions (irc2.5+), and maintained the IRC
server code version irc2.6 and irc2.6.1.

22See chapter 3.1.1.2
23Vuong, Daniel (1992-01-07)Forwarded mail... Mailing list Operlist (1992).
24The server code version irc2.6.1, coordinated and maintained by one of the NickServ administrators (Armin

Gruner) contains special provisions for IRC services. It istherefore possible that NickServ made use of these
provisions.

25See above figure 3.4 on page 45, user counts in 1990 and 1991.

117

6 Nickname and Channel Ownership

In the irclist mailing list I have found a discussion thread where an IRC admin admittedly

issued a/kill command against the NickServ in May 1991, for which he cited "annoyance"

about the service:

And now, to clarify: what I did yesterday was not an attempt to compromise
the "security" of NickServ, nor was it sabotage. It was me fin ally reaching
my annoyance threshhold after seeing "Nickname is reserved " fill my screen

once too often. 26

There followed a debate in the mailing list, leading to an (unofficial and informal) "vote"

against the NickServ service. But apparently the service must have been revived afterwards,

because in May 1992 there is a mail in the operlist mailing list which mentions NickServ@services.de27.

But at the latest in 1994, NickServ ceased to exist:

Archive-name: irc-faq
Last-modified: 1995/11/28
Version: 1.53
[...]
(17) What was NickServ? Is NickServ ever coming back?
NickServ was a nickname registration service run in Germany . It
was a bot that told people who used a registered nickname to st op using
that nickname. NickServ has been down since the Spring of 199 4.
It is not likely that NickServ will be back.
Remember, nicknames aren’t owned. 28

The examples of both the Eggdrop bot and the NickServ show howthe IRC «code» can be

expanded not only by changing the server code, but also by connecting to the IRC interfaces

(client-server for bots, server-server for services). This is especially important for users, who

otherwise have not «code» means to influence the policies implemented in the IRC.

The next section turns to two examples of channelregistrationservices, which not only

give warnings, but install a full channel registration and control/ownership environment. The

differences between them show how different policies are realized with such services, partly

in code, and partly with administrative procedures accompanying the «code» structures.

6.3 IRC Channel Registration Services

Channel registration services change the no-hold policy upheld in the Onet and EFnet net-

works: They allow users to obtain a longer term control over achannel.

In this section, I examine two examples of such services29, and compare them in their func-

tionality and the policies behind them. These services werecreated by the Undernet and

26Wisner, William (3 May 1991)Re: NickServ, NoteServ: Goodbye. Mailing list IRClist (1991).
27Casey, Jonathan B. (12 Jan 1992)(FLAME FREE) NickServ on 2.7, New Email address and Volunteering.

Mailing list Operlist (1992).
28irc faq (1995)
29In this section, I concentrate onchannelservices only. DALnet also offers a nickname service, whilethe

Undernet has kept the no-hold policy for nicknames, so that the comparison of services is only possible with
the channel services.

118

6.3 IRC Channel Registration Services

DALnet based on their philosophy to better support their usership30, and these services can be

seen as an expression of this philosophy. They each offer notonly registration of channels, but

various channel management tools, such as a channel operator hierarchy, additional channel

modes etc.

The DALnetChanServservice and the UndernetX/W service were both put into service

in 199531. While the DALnet has implemented what amounts to a full channel ownership

with no strings attached, the Undernet has installed a mix ofadministrative procedures and

technical service bot to enforce a temporary control privilege over a channel which has to

meet a number of conditions for its registration and use. Each network, using the same basic

technical mechanism (IRC service bot), has built a service offering which differs in policy,

technical implementation, and administrative procedures.

This section concentrates on thefunctional side of these services, as has been found in

various documents on the websites of the networks, and elsewhere, since again (like in the

case of the NickServ), no source code packages were publiclyavailable for these services.

This may be one side effect of the main property of services ingeneral: they are runcentrally,

on one host, while IRC servers aredistributed, and their source code has to be distributed to

others as well.

6.3.1 Channel Registration in the DALnet: ChanServ Service

DALnet, created in 1994 as user friendly alternative to the EFnet, runs a number of services,

including those which provide ownership to nicknames and channels. The services are one of

the hallmarks of the DALnet:

DALnet stands out as being the largest IRC network with services. It was indeed the first to have

successfully implemented ****Serv services for its users back in 1994. The most well used of

these services are !NickServ ,!ChanServ and !MemoServ.32

Their ChanServchannel registration service offers what amounts to a full ownership of a

channel, i.e. the control of a user over the channel for the duration of her ownership, with next

to no conditions attached. The registration procedures arelargely automated, and therefore all

substantive policies are implemented into the service; no judgment or interference by officials

or users is necessary.

30That is, serving them better than the EFnet, which upholds the original policies regarding channels and nick-
names (above section 6.1); but there is indication that channel-related services have been recently introduced
or at least tested there: see (Riedel, 2001, ch. 11 "Services") and the Chanfix page on the EFnet web site,
http://www.efnet.org/chanfix/ (2005-01-19)

31ChanServ in late January 1995 (PJKevin and Dalila (2004)), and the X/W service in February 1995 (Brown
(2003)).

32PJKevin and LadyDana (2004)

119

6 Nickname and Channel Ownership

Next to the registration and ownership enforcement, the service offers additional features for

channel management, such as nominating lower ranking channel officials with some power,

special ownership succession procedures, etc.

The following description is largely based on the help documents available on the DALnet

website (PJKevin and Mystro (2004); PJKevin and quen (2004)). All command descriptions

are directly quoted from these two, if not referenced otherwise.

6.3.1.1 Channel registration

Consistent with the philosophy of the DALnet to give users the equivalent of an ownership

over a channel, the registration process is fully automated. In order to register a channel, a

user simply sends aregister command to the ChanServ33:

/chanserv register #channel password description

This command sends a message to ChanServ34 with the to-be-registered channel name, a pass-

word which subsequently authorizes one as the owner of the channel, and an obligatory short

description of the channel. This registration follows the ”uniqueness” and ”first come-first

serve” policy35: registration is rejected only if the channel has already been registered36. If

successful, the user is assigned the special role ofchannel founder. She now owns the channel

and has absolute control over it, enforced by the ChanServ.

Similar to the registration, the founder can release the channel with a simple command:

/chanserv drop #channel

An interesting situation arises in connection with the nickname registration. In order to register

a channel, the user needs to be registered with the NickServ nickname registration service.

The NickServ implements an expiration policy: If a user leftthe nick name unused for 30

consecutive days, the nickname expires37. Since ChanServ identifies the founder through the

registered nickname, the channel would automatically expire as well. For such a situation,

ChanServ allows the founder to name a successor who is assigned the channel founder role if

the original founder’s nickname expires:

/chanserv set #channel successor nickname

33In order to register a channel, the user must also use a nickname registered with the NickServ nickname
service.

34The command/chanserv has to be explicitly implemented on the IRC client as it is unique to the DALnet.
If not implemented, the user has to use the generic command/msg chanserv@services.dal.net
instead.

35See above section 6.1.2.
36The description does not make clear what happens if the channel already exists in the DALnet.
37PJKevin and LadyDana (2004), chapter 1 ”Requirements, Abilities and Responsibilities”.

120

6.3 IRC Channel Registration Services

The succession process is quite elaborated, but fully implemented in the NickServ code; no

human intervention is necessary:

If the founder’s nickname expires, and that channel has a successor, the following will occur: A

memo is sent to the channel’s succesor with an AUTH code. The successor must use the AUTH

code to authorize himself in the channel within ten (10) days. If the successor does so, a random

password is generated that can be used to identify and becomethe founder. If the successors

nick expires, or the successor doesnt take any action withinten (10) days, the channel expires as

normal. A user can prevent himself from being added as a successor to a channel if he has enabled

the NOOP option on his nickname.38

Another interesting feature is the the ability to transfer ownership to another user:

/chanserv set #channel founder

Information: The FOUNDER argument of the set command will allow the

user that uses this command to change the channel founder to h imself.

Note: The nickname that the user is using must be registered or the
command will not work 39

This command contains a peculiarity: There is no mention of any action by the original

founder other than passing the channel password. The consequence is that ultimately, the

password is the only authorizing information necessary fora channel. If a user somehow gets

access to this password, no further action from the founder,such as explicit transfer to the

other user, is necessary to become the new founder. Warningsin the documentation to keep

the password secret and never share it with anyone else supports this view40.

6.3.1.2 Channel management features

Once the channel has been registered, the channel founder has access to a number of features

for the management of the channel. They roughly fall into twocategories: nominating channel

officials, and special channel properties and commands.

Channel officials

ChanServ allows the founder to nominate other users for two additional official roles in the

channel. This results in a five-level hierarchy shown in table 6.1.

On top is the founder, with all powers of the other roles, and the ability to nominate super

ops.

Thesuper op(SOp) acts as a representative of the founder: she can name other to be auto

ops, give or take ChanServ-enforced permanent channel bans, may kick all users out of the

channel (with the exception of the founder; but not excepting other SOps).

38PJKevin and Mystro (2004), chapter 11.16 ”Setting the successor of the channel”
39PJKevin and Mystro (2004)
40See for example PJKevin and Mystro (2004): ”Under no circumstances should you give out the password to

anyone. DALnet will NOT help with takeovers if you have shared your password”.

121

6 Nickname and Channel Ownership

Role Description

Founder Owner of channel, absolute control

Super op (SOp) Nomination of AOps.

Auto op (AOp) Automatically assigned chanop privileges; override bans and invite-

only for oneself; take chanop status

Channel operator (regular channel official)

User (regular user)

Table 6.1: DALnet Channel Service Officials

Theauto op(Aop) acts as a superior for normal channel operators: She can assign herself

chanop status, either automatically upon joining the channel, or by requesting it from the

ChanServ. Also, she can override an invite-only mode or channel ban for herself, can take

away chanop status or kick everyone out of the channel (provided no superior is present in the

channel).

Channel properties

The ChanServ enhances the normal channel modes in certain ways: access can be limited

only to users who have a nickname registered with the NickServ service; changes be limited

only to ChanServ-backed officials (AOp, SOp, founder); or channel membership limited to

these officials, etc. Also settings more specific to the hierarchy can be made: It is for example

possible for the channel founder to set the maximal number ofmembers in the channel to

some limit which then cannot be overridden by any of the lowerofficials: as soon as one of

the latter changes this limit, ChanServ immediately resetsit to the founder-given value.

A last peculiarity of the ChanServ implementation concernsits relationship to the channel.

In contrast to channel bots41 and the X/W service examined in the next section, the ChanServ

does not keep the channel open by joining it as a pseudo-user.It is well possible that the

channel ceases to exist (all members leave the channel), anda user different from the founder

recreates the channel, thereby becoming channel operator of that channel. But the ChanServ

keeps all information about the channel, including all channel modes and the ban list; and as

soon as the founder chooses to reuse her channel again, it simply retakes the channel with

the help of the ChanServ and reinstates all modes and bans as saved within the ChanServ.

It serves as a ’backup copy’ of the channel state, and enforcer of the registration when the

founder deems it necessary.

41See above section 6.2.

122

6.3 IRC Channel Registration Services

6.3.2 Channel Registration in the Undernet: The X/W Service

The Undernet shares a similar philosophy like the DALnet, tobuild a user friendly alternative

to the EFnet. The most distinct feature of the Undernet management are its various commit-

tees which coordinate everything from code development (coders-com), network management

(routing-com) and channel service management (cservice) to public relations and documen-

tation (user-com). Each is constituted of a group of volunteers who contribute and manage

contributions from the usership-at-large.

Consequently, the approach that the Undernet has taken regarding the channel registra-

tion service differs from that of the DALnet: an elaborated mix of committee-evaluated and

«code»-implemented registration process, with the resulting channel control understood as

a temporarily assigned privilege rather than a full ownership. The institutional side is repre-

sented by the channel service committee (CService), and thetechnical site by the X/W channel

service bots42.

6.3.2.1 Channel registration

[16:50] <TheBeast> "Channel registration is not meant as a means to start a new channel.It is

meant for previously established channels to have an opportunity to have some stability.If you are

first starting a new channel, then just start using your channel and give it time to see if a reasonable

user base develops to justify registration." [L62]43

The difference between the DALnet ownership and the Undernet philosophy expresses itself

most vividly in the registration process. Whereas in the former registration is just one com-

mand away, in the Undernet, a number of conditions have to be met, and a lengthy application

process passed. The whole policy is written down in a special”Channel Service acceptable

use policy” (AUP)44.

The two main conditions are:

ONE PERSON PER CHANNEL REGISTRATION: A person is only allowed to register one chan-

nel. The Undernet policies emphasizes that this has to be a real person, not an unique

user/host pair. This also is an indication of their policy ofresponsible control instead of

absolute ownership.

ESTABLISHED CHANNEL ONLY: The channel has to be already established, meaning that it

enjoys a stable and continuing usership.

42Actually, these bots were replaced in 2001 with the CMaster bot. From the functional side, there appear not
many differences, so that I have limited my examination to the X/W service bots.

43Undernet-CService (2003)
44Undernet-CService (2002)

123

6 Nickname and Channel Ownership

In order to show that the second condition is met, the applicant has to name ten other users

who are regular members of the channel and agree that the applicant should be the one who

registers the channel.

The application is done through a special web page on the CService web site, which trig-

gers a longer process including both technical checks and review by the Channel Service

Committee. The committee reviews the application for its merits, and decides on acceptance

or rejection of a registration. The whole process is described as follows:

After your registration form is received by the CSC, the supporter email addresses are checked

and each supporter is mailed a copy of the application. The applications is then posted to the

regisistration WWW pages under new applications. They are left in this category for 10 days,

during which time other people can object to the channel by using the web pages. The application

then moves to the "Pending" section. Here, the applicationsare also reviewed by CSC to make

sure they meet the criteria for registration. If the application is approved, you will receive an

approval email and instructions on where to obtain the channel manager’s FAQ. The channel is

added as soon as it is approved. The entire registration process takes 10-15 days to complete.45

Only if the committee has approved the registration, the applicant is assignedchannel manager

for the registered channel and given access to the X/W channel service bots. But in tune

with the overall philosophy, the responsibilities for the channel only start here. The channel

manager and other officials nominated by her, as well as the channel users have to show

that they regularly use and maintain the channel. This includes regular appearance of the

channel manager in the channel, as well as continuous use of the channel by its members. The

committee appears to regularly check on the activity of the channel, assumedly also with the

help of the X/W channel service bots. The AUP emphasizes:

Channel Services regularly monitors all registered channels for activity. If a registered channel is

not active, X will be removed from the channel. Channel managers are expected to be active in

the channel. If you are gone for more than 21 days, X can be removed from the channel or in very

active channels, a new channel manager can be elected by the high level ops.46

In addition, the Undernet regularly arranges so-called ”opschools”, IRC sessions where appli-

cants or channel manager are educated about the registration, the use of the bots, and ”other

stuff”47.

Finally, to underline the commitment of the Channel Servicecommittee to their policies,

their web site also contains a ”Channel Service committee guidelines” document48 explaining

their institutional structure including the what they call”ethos”, as well as organization and

procedures.

45Undernet-CService (1997)
46Undernet-CService (2002)
47See http://cservice.undernet.org/main/opschool/; transcripts of past sessions are also made available.
48Undernet-CService (1998)

124

6.3 IRC Channel Registration Services

Taken together, the Undernet puts a heavy emphasis on the application of institutional struc-

tures and procedures in order to allow users a conditioned temporary control over channels.

6.3.2.2 Channel management: The X and W channel service bots

Once registered, the channel manager is responsible for allactivities in the channel. In turn,

she is given control over this channel through the X and W channel bots: She can name channel

officials, and a number of commands are available to enforce the actions of those officials, and

in general to manage the channel49.

Channel officials

Similar to the DALnet ChanServ bot, X/W allows the channel manager to nominate other

channel officials. But in contrast to the former, it has a 500 level hierarchy, grouped into 9

categories; the channel manager as the highest official occupies level 500 (table 6.2).

Table 6.2: X/W user levels
Level Title of Official Main Powers

500 Channel Manager Sets privileged X/W modes

450 Trusted Channel Admin Set main X/W modes; tell X/W to join/part channel

400 Userlist Admin User list access (add/remove/modify); expanded X/W

status information

200 Userlist Operator Clear expired bans in ban list; kick user groups

100 Channel Operator Give or take chanop status, suspend user’s X/W access

for specified time

75 New Channel Operator Ban and unban channel users

50 Channel Regular Kick single channel users; change channel topic

1 Minimum Access Login and logout into X/W; basic X/W status informa-

tion

0
Everyone else

(i.e., not in user list)
Mostly commands for channel information

The rationale behind the 500 levels lies in commands which could affect other users and

officials, such as channel kicks or bans. These commands can only applied to userslower in

the level than oneself. For example, an ”userlist admin” cannominate other official roles. But

if she has level 444, she can only nominate others up to level 443. As one consequence, there

can be only one channel manager (level 500), because she – as highest ranking official – can

nominate others only up to level 499. This system allows to build fine-tuned hierarchies inside

one level, where officials with higher level values (but sametitle and commands available)

control those with lower level values.
49For the following details of the X/W service bot, see Undernet-CService (1999).

125

6 Nickname and Channel Ownership

X/W features

As for the commands or powers available, they are mostly similar to those available in chan-

nels, or those in the DALnet ChanServ: to set channel modes, to kick users from the channel,

or to ban them for a longer period50. Additionally, commands exist to manage the user list,

ban list, and X/W modes.

It is not necessary to list all these commands here; it suffices to say that they are again

enforced by the X/W service bot on behalf of the channel officials. Instead, two examples, a

command and a set of X/W modes reiterate a point made above in the chapter on sanctions51:

How «code» can be shaped to retain a balance between the powergiven to lower-level officials

and the control over them:

SUSPEND COMMAND: The suspendcommand gives officials the power to block access of

lower level officials to the X/W for a specified duration. The command allows to spec-

ify the time in units of seconds to days, so from short-term tosanctioning to a long-term

demotion is possible. A correspondingunsuspendcommand allows to lift the suspen-

sion as well. This command is positioned fairly low in the hierarchy (level 100 and up),

so is implemented to serve as general power control tool between the channel operators.

OFFICIALS FLOOD CONTROL: Chapter 5.4.2 has introduced the problem of flooding: users

harassing other users by sending a rapid succession of messages to them. The X/W

enforced modesFloodPro(kicks, topic changes),MassDeopPro(taking operator status

from a user), andNickFloodPro(nick changes) deal with such situations: each of them

can be set to a numeric value. If a user or official sends more than ’value’ commands

associated to each of these modes in a 15 second time frame, then she is automatically

kicked from the channel, and suspended from the X/W. In the case of FloodPro and

MassDeopPro, the associated commands are operator-only ones, so this feature again is

mainly geared towards control of channel officials, rather than users. In contrast to the

suspend command though, these modes can only be changed by high ranking officials52.

The X/W offers the officials not only commands and feature to help manage the channel, but

also to manage the relationship between the officials. And above all this looms the control of

the Undernet channel service committee which enforces the philosophy of the channel regis-

tration as a temporarily given privilege given to those who maintain a usable and popularized

channel.

50Undernet-CService (1999) contains a list of all X/W commands.
51Chapter. 5
52FloodPro: channel manager only. MassDeopPro, NickFloodPro: Trusted channel admin (level 450).

126

6.3 IRC Channel Registration Services

Summary – Nickname and Channel Name Ownership

This chapter has examined the ownership issue of identifiersin the Internet Relay Chat: Nick-

names and channel names. For both, the initial design of the IRC determined a simple set of

policies: They had to be unique in the network (uniqueness policy); the first one to take a name

claimed it for the duration of its use (first come-first serve); as soon as the name was not used

anymore, it was free to take for anyone else (no-hold). Thesepolicies were mainly chosen out

of technical reason, but upheld by some networks, although users and channel groups voiced

the need for policies which would allow for a long-term use ofa name.

As is often the case in such an environment like the IRC, technical means were found

which gave users the ability to ’reformulate’ these policies: user bots, programs which run

continuously to provide specific services possibly not available in the servers. In the case of

channels, the application of such bots allowed to hold on channels, thereby circumventing the

no-hold policy, in addition to many other channel management (and other) tools that such bots

offer the user. Notably, these features are available through a regular connection to the IRC

(the IRC client-server protocol), without any changes in the server code.

This potential that bots offer was also exploited by the IRC admins. Some networks deviated

from the original name policies and installedservice bots, officially approved bots which

connect to the other servers as a special server, thereby sharing their authority.

Two different implementation forchannel registration serviceswere examined: the DALnet

NickServ, which implements a fully automated channel nameownershipscheme, with next to

no conditions attached to its use. In contrast, the UndernetX/W service employs an sophisti-

cated registration procedure which includes technical as well as committee-approval elements,

and enforces a policy which gives a temporary hold over a channel under the condition of con-

tinuous active use and responsible management of the channel, which is regularly monitored

by the Undernet. Using the same technical mechanism of bots,the both network realized a

differing set of policies for the registration of channels.

The topic of bots served to show some aspects of the «code» governance topics examined

in previous chapters:

IRC CONSTITUTION AND INTERFACES: The initial policies for names in the IRC were ap-

parently a byproduct of the implementation, a consequence of the technical structure.

The formulation therefore happened entirely in «code». Similarly, but apparently un-

expected, was the emergence of user bots, empowering users to actively shape their

own policies and override those of the network, it is based onthe «code» constitutional

structure of the IRC, enabled by the existence of the client-serverinterface: the power

of user bots does not use any addition in the IRC server code, but is a result of detaching

the IRC client from the interactivity of users who instead programmed it to act on their

127

6 Nickname and Channel Ownership

behalf. Similarly,service botsprovide their services not through special facilitation in

the server code, but simply by being authorized to use the server-server interface, to

provide their centralized service. The principle of centrality in a distributed network,

examined later on, here also posed a problem in my analysis: No source code for either

service bots was available for examination.

IMPLEMENTATION «CODE» RULE PATTERNS: It is worth mentioning how the set up and

configuration of the Eggdrop user bot resembles that of the IRC server as outlined in

chapter 3.2.3. All elements – from patches and source code change to configuration file

changes – are present here. The breadth of functionality offered here makes the user

almost an IRC admin herself53.

RULE TYPES: The different approaches to channel registration have shown the application of

several rule types: In the DALnet ChanServ, fully automateddue to its principle of full

ownership, implements its substantive rules in «code». Notonly registration and re-

lease of the channel, but the succession policy and nicknameexpiration all are examples

where the policy is formulated and enforced through the ChanServ service bot.

In contrast, the Undernet channel registration service haschosen to formulate their reg-

istration policies in a mostly administrative way, where ultimately the members of an

Undernet-official committee decides over the merit of an application; the X/W service

bot comes into play only after the registration has taken place.

After the registration, both ChanServ and X/W offer the registrar substantive and re-

medial rules similar to those in normal channels, but offering more options and better

enforcement due to the central power of the service bots, as well as controller-selecting

and constitutive rules (channel official hierarchies; suspend and flood control against

channel officials in X/W), much finer grained as those available in normal channels.

53Indeed, the Eggdrop web site also features a script which allows to connect several bots to a ”botnet” network:
see http://www.egghelp.org/netbots/index.htm (2005-04-26).

128

7 Controlling the Controllers?

IRC operators or IRCops are special users who have privileged access to a number of com-

mands in order to help maintain servers, network, and users.As such, it is the single most

powerful role inside an IRC network.

The role of the IRC operator is entirely «code»-based: without the provisions in the server

code, there would be no such role. As a consequence, their powers as well as the checks and

balances depend on the «code» rule design agreed upon by the IRC administrators and coders.

Each IRC admin has the power to assign and revoke users the IRCop privilege.

Section 7.1 gives an overview of the IRC operator role, including an example of how a

network related command can be abused to take over a channel.

Section 7.2 gives an impression of the reputation of and norms surrounding IRC operators,

as well as (lack of) nomination process for them. Judged by this, there appears a certain

’mystic aura’ around the IRC operator role: a closed group with no clear rules how they can

joined, and discrepancies between what they should do, and how they actually behave.

In section 7.3, I show how «code» can help to provide the transparency in a system in

order for the participants to enter into disputes in the firstplace. The extent of information

about what is happening in the IRC – here, the actions by IRC operators – determines how

informed the participants are. This is also reflected in the IRC code, ininformationavailable

to participants,noticesautomatically sent by the servers upon certain actions and events, and

loggingfacilities in the servers.

Finally, section 7.4 examines UWorld: a service bot introduced in the Undernet which

expands the powers of IRC operators and other users to control channels, and issues sanctions

in ways not possible in other networks. In order to check these powers, UWorld has a separate

access system as well as notices and log facilities implemented to heighten the transparency

of some actions.

7.1 IRC Operator – Power and Control

The IRC operators occupy the role of the main officials insidethe IRC: users appointed by

IRC administrators to take over server- and network- and user-related administrative tasks,

and for these purposes given access to privileged commands.

129

7 Controlling the Controllers?

This role has been present in the IRC from its inception on, and is apparently based on a

similar role in the predecessor of the IRC, the Bitnet Relay Chat, as the description of their

”Relay Operator” shows:

The day-to-day maintenance and operation of a Relay server is carried out by the "Relay Op-

erator", an individual or group of individuals who are responsible to the institution’s network

administrative authority. The Relay Operator is also responsible for implementing corrective ac-

tion to temporarily or permanently terminate a user’s access to the Relay in cases of violation of

the guidelines described in other sections of this document.1

In a similar fashion, IRC operators manage the day-to-day operations of an IRC server and the

IRC network, and can temporarily terminate a user’s access.

Technically, in order to become nominated an IRC operator, one IRC administrator adds an

specific config line (O-line) into the configuration file, providing the IRCop’s nickname and a

password (algorithm 15).

Algorithm 15 ”Operator” configuration line (O-line)
O: authorize operators. Fields are, in order, host name the operator must

be logged in from (wildcards allowed), operator’s passwor d, operator’s

nickname. The first example allows me to become an operator from any

machine in BU.EDU by typing /oper wisner foo.

#

O: * .bu.edu:foo:wisner
O:bu-cs.bu.edu:bar:jsollyxcode

Source: [irc2.1.1/example.conf:27-33].

Once nominated this way, the IRC operator connects to the IRCnetwork as normal user,

and then issues the/oper command (see figure 7.1) in order to be recognized as IRCop by

the server.

The main duties of IRC operators lie in three areas, in the order of importance2:

SERVER MAINTENANCE: The main IRCop duty concerns the smooth operation of the server

of the IRC admin who nominated her. Various conditions from server code bugs to in-

creased system load can lead to interruption of the operation, which immediately affects

the entire network. The IRCop helps by restarting or entirely stopping the server process

in case of disruptions, next to other server-related tasks.

NETWORK MAINTENANCE: In addition to server-related duties, IRC operators play an im-

portant role in the administration of the entire network. Infact, the group of IRC ad-

mins and IRC operators constitute the highest organizational level in an IRC network,

1Bitnet-Relay (1986)
2See for example DALnet (2003); also Riedel (2001) for a detailed account of the network-related duties

130

7.1 IRC Operator – Power and Control

since no corporation or other single entity above them exists. As part of these main-

tenance tasks, IRCops have access to commands to review the network structure and

make changes in the interconnection between servers.

USER ASSISTANCE: IRC operators are also available for help and support of other users, but

this duty is seen as least important: ”[helping the users with problems] is done primarily

in a IRCoper’s "free time" if they choose so training and experience as a helper is not the

primary focus or major need”3. When users threaten stability or operability of a server

or the entire network though, actions against them become more important as they touch

the higher ranking duties of IRCops (server and network maintenance).

To fulfil these duties, the IRC operators have access to privileged commands listed below

(table 7.1).S e r v e r � r e l a t e d c o m m a n d sC o m m a n d D e s c r i p t i o n/ r e s t a r t R e s t a r t s I R C s e r v e r p r o c e s s/ d i e S t o p s I R C s e r v e r p r o c e s s/ r e h a s h R e r e a d s i r c d . c o n fc o n f i g u r a t i o n f i l e i n t o s e r v e rp r o c e s s
N e t w o r k 9 r e l a t e d c o m m a n d sC o m m a n d D e s c r i p t i o n/ t r a c e s e r v e r R e t u r n s i n f o a b o u t a l l s e r v e r sb e t w e e n l o c a l o n e a n d s e r v e r/ c o n n e c t h o s t p o r t L o c a l s e r v e r c o n n e c t t o h o s to n p o r t . O n l y h o s t s s p e c i f i e di n c o n f i g u r a t i o n f i l e a l l o w e d ./ s q u i t s e r v e r B r e a k s l i n k b e t w e e n t w or e m o t e s e r v e r s (“ s e r v e r q u i t ”)

O t h e r c o m m a n d sC o m m a n d D e s c r i p t i o n/ k i l l n i c k E x i s t s u s e r n i c k f r o m n e t w o r k/ w a l l m e s s a g e S e n d s m e s s a g e t o a l lc o n n e c t e d u s e r s i n t h en e t w o r k/ o p e r n i c k p a s s w o r d A u t h o r i z e s o n e s e l f a s I R Co p e r a t o r . n i c k / p a s s w o r d m u s tm a t c h i r c d . c o n f
Table 7.1: IRC operator privileged commands

From the user perspective, the most visible power of IRCops certainly is the/kill com-

mand already examined above4. But the power with the greatest potential for disruption are

the network-related commands, since they can affect literally thousands of users, for example

if an IRCop breaks the link between two servers in the middle of the network: In all channels,

the membership is split in two, so a possibly large part of themembers suddenly disappear

from the channel (net split). The following show case illustrates this power.

Show case: Gaining channel operator status via /squit

In order to give an impression o the power of such commands, one mailing list message give

details on an abuse of the/squit command to gain channel operator status (called a ”channel

takeover”):

”[H]e /SQUITed his server to create a chanop who then deoped all of the users ont he channel

except himself and then signed off. After that, he AGAIN squited a server (his personal server this

time i believe) and restarted ops on the channel.”5

Here is the step-by-step reconstruction of the channel takeover:

3DALnet (2003)
4Chapter 5.1.
5randall@sumter.cso.uiuc.edu (1991-10-14)Spewbabe’s abuse of SQUIT. Mailing list Operlist (1992)

131

7 Controlling the Controllers?

1. The starting point was the channel+hottub 6, where a userspewbabe was banned

from (the complaining user apparently had IRC operator status on his server).

2. spewbabe countered first by severing the link between his local serverand the rest of

the network with/squit (net split). This left him with an empty channel+hottub

on his side of the net split.

3. Since empty channels get deleted by the system,spewbabe could recreate the channel,

and automatically gain channel operator status.

4. The server rejoined with the network, and the the two channel parts were put together.

Becausespewbabe was channel operator on his server, he was now channel operator

on the channel where he had been banned from in the first place.

5. He now ”deoped” (take operator status) from all other channel operators, leaving him

the only chanop on the channel.7

Although this might sound complicated, the other alternative, to/kill all users in the chan-

nel8, would have taken much more time. More importantly, it wouldhave resulted in a notifi-

cation of all IRC operators of 20-30/kills by one IRCop, arousing strong suspicions of the

legitimacy of such an action. The way it actually happened though, only one to two/squit

notifications have been seen, which certainly did not get anyattention by the IRC operators.

So it strikes a good foresight (or a deliberate set up) that the user who sent this description to

the mailing list logged the events as happened to document this misbehavior.

7.2 Nominating IRC operators and IRCop Netiquette

Positioned between the IRC administrator and the simple user, the IRC operator is in an awk-

ward position: on one hand, she derives her legitimacy only through the assignment byone

administrator in the network without any visible process (vote, vetoes etc.) or coordination

between the admins. On the other hand, duties and powers given to her encompass the whole

network. This discrepancy is reflected in the documents on IRCop policies.

”How do I get to be an IRC operator?”

The documentsof IRC operators indicate that, despite the power and importance of this role,

the large IRC networks have not chosen to implement more formal procedures for their nomi-

6The plus sign also denoted a named channel for a short time before it was superseded by the hash mark. So
+hottub is the same as#hottub .

7According to the short description, the user did another/squit (”his personal server”). This appears strange,
since he already gained sole channel operator status in the first place.

8according to the description containing around 20-30 members

132

7.2 Nominating IRC operators and IRCop Netiquette

nation, leaving it to the individual IRC admins. Accordingly, these documents draw an some-

how idealized but non-informative way on how to become an IRCoperator: Build up trust

with IRC officials, always be helpful in the network, etc. Alltexts agree in one point though:

The best way to never been assigned IRC operator privileges is to ask for it. For the Undernet:

«How can I get to be an IRCop?

The easy answer to this question is that if you go around asking IRCops how you can get to be one,

you probably will never be one. There is no list of potential IRCops or any kind of application

procedure. There are actually two ways to become an IRCop: Start your own Undernet server or

get asked by an admin to be an IRCop on their server. Starting aserver is not practical for many

people, so the latter is the more common way. Here it becomes abit of a Catch-22 – an admin will

only ask someone they trust to be an IRCop on their server, butif they think someone is cozying

up to them just to get an O:line, they won’t take that person seriously. You must be asked by a

server admin, and asking an admin to make you an IRCop is a sureway of never becoming one. It

is actually very difficult to become an IRCop on Undernet, butplease don’t think this means you

can’t help. #userguide, #Help, #mirc, #cservice, and the many other help channels are always on

the lookout for well-intentioned people who really do just want to help out without looking for a

quick way to get an O:line and become an IRCop. »9

And similarly, for DALnet:

The position of an IRCop is not one which can be applied for, itis granted by Server Administra-

tors and tends to be given to people they have known for a number of years either on IRC, or in

real life. Therefore, if the role of IRCop is your goal, you are likely to become disappointed and

disillusioned over time. [...] There is also one sure fire wayof ensuring that you never become

an IRCop and that is by ’shopping’ for an O:line, in other words, continually asking one or more

Server Administrators to make you an IRCop.

This lack of transparent criteria and procedures of such an important official role leaves an

impression of obscurity and secrecy which finds its continuation when looking at policies and

norms which are to guide IRCop behavior.

IRC operator ’etiquette’

Documents paint a mixed picture regarding the behavior of existing IRC operators, inter-

spersed with ”etiquette”-like expectations on how they should behave. The earliest reference

for the responsibility of IRCops is short, and rather factual than providing any guidance:

Obnoxiousness is not to be tolerated. But operators do not use /kill lightly.10

One reason for this terseness might be that back then, the number of participants was small,

so that they knew each other well, and the difference betweensimple users, IRC operators and

9Undernet-User-Committee (2001)
10[irc2.1.1/doc/MANUAL]; see also Reid (1991) who discussespower, etiquette and behavior of IRC operators.

133

7 Controlling the Controllers?

IRC admins were blurred; most users in the early IRC were IRC admins, and therefore also

IRC operators as well11.

An early attempt to formulate an "Etiquette Guide" for IRC operators was made at the time

when the EFnet emerged. But despite its title, it contains less ’etiquette rules’ than rather a

description of the commands available to them. Only unspecified norms are given, such as:

/kill and /wall are special operator commands. You should use them with care, and only if abso-

lutely needed.12

And, to dilute the normative character even further, the last paragraph states:

Please let me know if there should be any additions to this guide. Again, this is not MANDATORY,
this is just a GUIDE. Please conduct yourself as an IRC Operator would...you are looked upon for
assistance, both emotional and mental.13

This guide was updated in January 1991, in May 1992, and againin December 1994. The last

rewrite, claiming to be "more a reflection of the current state of IRC", is fairly pessimistic on

the effects of norms, or such a guideline. See for example thecomment accompanying the

/kill command explanation (last line):

/kill is a special operator command. The format is as follows:

/kill NICKNAME comment.

Comment can be a phrase of almost any length (within reason) and should be used for specifying

the reason of the kill.

Example:

/kill jonathan hey, this is fun!14

And even more explicit:

Don’t bother wasting your time with #twilight_zone. There are many operators on many hub

servers (including many found in this channel) which purport to know something but in fact know

nothing. They will most likely ignore you, make fun of you, abuse you, dump your private mes-

sages to the channel, etc. In general, many operators (especially true of those on #twilight_zone)

are not the sort of people you’d want to do this as a paid job andwon’t do anything unless it serves

them in some way.15

This view from 1994 did not change in 1997, according to another IRC operators’ guide:

From what I’ve seen, most opers look down on users, make fun ofthem, and ignore them.16

11This also may be the reason why in early documents "operator"and "administrator" are sometimes mixed up.
See for example [irc2.1.1/doc/INSTALL], where one sectiontitle reads «OPERATOR PRIVILEDGES: How
to become the IRC Adminestor on your site» (errors in the original text).

12Internet Relay Chat Operator Etiquette Guide 1991-1994, version 1991: [irc.2.6.1/doc/US-Admin/Operators]
13ibid.
14Internet Relay Chat Operator Etiquette Guide 1991-1994, version 1994: [irc.2.8.21/doc/US-Admin/Operators]
15ibid.
16Brinton (1997)

134

7.3 Notices and Logs

But the author takes a more pragmatic view by adding:

There are a lot of politics that go on in the irc operator community and, whether you like it or not,

these politics are here to stay. Fighting this and complaining about it will get you nowhere.17

As for social norms, he offers more generic ones, such as using common sense when apply a

/kill against a user, and to give reasons for such actions, help other users, or to regard the

social order of opers and admins:

On occasion, opers have their disagreements. There is a bit of a pecking order that exists in the

oper ranks, usually with hub admins and opers being more "powerful" than leaf admins and opers.

It’s generally not a good idea to try to win an argument with the people who are providing your

connectivity to the IRC network. For that matter, it’s generally not a good idea to try to win any

argument at all. If you do have a serious problem with anotheroper, and can’t resolve it directly

with him/her, go to your admin about it. Your admin can then approach the issue with the other

oper’s admin, and if that goes nowhere, with their uplink admin. This is a quick way to make

enemies, so make sure it’s important to you before doing it.18

Apparently, the role of IRC operators always remained a source of disputes, controversies and

power struggles. Part of this may also be attributed to the growth of usership and number

of servers connected, leading to the need of more IRC operators to manage the ever growing

network. The creation of other network with the explicitly stated goal to offer a more user-

centered network (Undernet, DALnet) can also be seen as reaction to these problems.

7.3 Notices and Logs

The previous section has given an impression of the contentious role of the IRC operator.

Appointed by nomination by one IRC administrator based on noformal or even discernible

criteria, but given power over the network and the users. Supposed to act for the common

good (mainly network stability, but also user help) of the network, but apparently pursuing

other interests as well, for which they even actively abuse their powers.

Beyond «code» tools which implement mechanisms to check these powers, such as limiting

the scope19 or functionality20 of IRCop commands, an important prerequisite for any control

is the capability toobservethe actions, to monitor the behavior. In a social setting like the

IRC, the ability to monitor the controller offers a kind of counterbalance to their powers, and

a means to foster a ’community’ to enable mutual monitoring,or behavior correction through

informal control21 by the community.

17ibid.
18ibid.
19Local operator role;/kills only for locally connected users or entirely revoked: see above chapter 5.1.2
20Limits in K-line access to IRC operators: see chapter 5.3.
21See Ellickson (1991, p.131).

135

7 Controlling the Controllers?

In the IRC, there are three groups who may engage monitoring IRC operators: IRC admins

(in addition to their «code» means to limit the powers), other IRC operators (as peer con-

trol), and users which are the most affected group of IRCops’actions. Hierarchically, these

correspond to a top-bottom, peer, and bottom-up control.

These parties do of not stand by themselves: One could well imagine that a dispute by a

user is easier resolved if some records are available to other IRCops or admins which can help

to evaluate the claims. Similarly, mutual information about actions between IRC operators,

together with tight communication connections between them (channels, mailing lists) might

facilitate norm building and mutual monitoring between theIRCops.

In any case, in the IRC server code, two mechanisms can be distinguished where the servers

automatically transmit information about IRCops’ actionsto these groups:

Notices are sent automatically upon the execution of certain actions, with the main audience

being IRC operators22 and users.

Logs are written into files by the server, and therefore are primarily an IRC administrator tool

to review logged actions after they happened.

7.3.1 Notices

”The hole point of KILL’s being visible to everyone is that, if needed, futher explanations can be

asked.”23

One mechanism to make system actions transparent to others arenotices. These are text mes-

sages sent by the server when some action – such as a command bysome user – is executed.

Depending on the implementation, notices can be sent upon the successful execution, but also

in case of errors, or other conditions.

An important characteristic of notices is their target or audience. In some cases, this audi-

ence is hard-coded to a fixed group (e.g., all IRC operators),in others a more variable group is

given access to it. And finally, the type and amount of the contents of the notice might differ.

Basic functionality and implementation

The functionality of notices can be shown by reviewing the sequence of actions when an IRC

operator issues a/kill command24. The corresponding functionm_kill() in the server

code first checks two conditions (Is issuer an IRCop? Is the target user in the network?) and

(upon passing the conditions) executes two actions (database synchronization, disconnection

of the target user); in all cases, notices are sent out.

22which includes IRC admins who mostly will be IRCops as well
23Savela, Markku (1993-02-20)Oper should not just sign on to IRC and then disappear. Mailing list operlist

(1993).
24Chapter 5.1.1

136

7.3 Notices and Logs

One kind of notices is self-evident, as it derives from the command itself: Those sent to

the command issuer, either on the successful execution, or due to some error or rejection, and

possibly those sent to the target(s) of a command as well, in the case of a/kill the affected

user.

My focus here lies on the other notices which do not directly follow from the command

itself. Of the many code lines in the function which send messages to users (command issuer,

target user) as well as servers (database synchronization), one code line sticks out:

sendto_ops("Received KILL message for %s. Path: %s!%s", us er, cptr->host, oldpath); 25

In this example, the functionsendto_ops() sends the message ”Received KILL message

for”, followed by the nickname of the exited user and a host path to all IRC operators26.

The host path is a sequence of the names of all hosts from the receiving operator to the host

where the command has been received, followed by the nickname of the issuer. Therefore all

information (action, issuer, target user) about every/kill is sent to all IRC operators present

in the network.

A notable detail in the implementation is the presence of a dedicated function for sending

those messages to all operators,sendto_ops() , indicating that it is used in many places

throughout the code. Table 7.2 on the following page shows all places where the function is

used.

Consistent with the primary duties of IRC operators, all butthe last two messages give

notice about server connections. The last message is a command which allows users to send

an (arbitrary) message to all IRCops. Therefore, the noticewith the /kill command in this

server version is the only which informs IRCops of a user-related action.

As example for the use of these notices, one user created a ”top ten list” of the IRC oper-

ators who issued the most/kills 27. This was used as an argument in a discussion about

the usefulness of the/kill command. The apparent importance of a discussion about this

command is expressed by someone else in the same discussion:

”Amazing isn’t it that the biggest discussion for quite a while on operlist has been of the KILL

command.”28

It appears that the existence of these notices created the awareness about problems which

then could be discussed, and leads to resolutions like the change of the/kill commands as

described above in chapter 5.1.2.

25[irc2.1.1/s_msg.c:807-808]
26Functionsendto_ops() , defined in [irc2.1.1/s_msg.c:154-168].
27monie’s matte green (1992-12-16)Re: KILL. Mailing list Operlist (1993)
28Watts, Andrew (1992-12-17)Kills etc etc. Mailing list Operlist (1992).

137

7 Controlling the Controllers?

Message sent to IRCop Associated outcome of action Location

Connection to <host> established Automatic connection to other

server succeeded

ircd.c:159 main()

Received unauthorized connection

from <host>

Connecting user or server re-

jected

s_bsd.c:223 read_msg()

Lost server connection to <host> Connection to user disrupted s_bsd.c:241 read_msg()

Connection to <host> established Connection request by user or

server approved

s_bsd.c:247 read_msg()

Link with <host> established Success of a IRCop-issued

’/server’ command

s_msg.c:755 m_server()

Received KILL message for <nick>.

Path: <user>!<host>

IRCop issued ’/kill’ command s_msg.c:807 m_kill()

<nick>: <message> User issued ’/woper’ command s_msg.c:1378

m_woper()

Table 7.2: Notices sent to IRCops in irc server version irc2.1.1

Notices allow the recipients to get a better overview about what is happening in the network,

and can help fostering the ’community’ between the participants of an IRC network.

Quantitatively, one can observe a continuous growth of notices sent to IRC operators.

Whereas in the whole irc2.1.1 code (October 1989) only threesendto_ops() are used,

irc2.4 (May 1990) already uses it in 14 places throughout thecode, and it grows steadily in

the EFnet to 65 in hybrid-6.0 (January 2001). This indicatesan active use of the notices, and

necessity or demand for more fine grained notices about the network.

Changes in notice mechanism

Next to the growth in notices, some changes in the mechanismsare notable. For a long time,

all notices could only be received by the IRC operators; normal users did not have access

to them. But with the beginning of the irc2.7 code series, thecoders made it possible that a

number of notices could also be received by users who wished to do so.

The functionality was implemented by expanding a mechanismcalleduser modes. Similar

to channel modes29, it allows the user to configure characteristics concerningher represen-

tation in the IRC. For example, an ”invisible” mode takes theuser out of the list of users

returned by the/who command. Also, IRC operator status is implemented as an usermode.

User modes are displayed or changed with the/mode command30.

The irc2.7 series (January 1992) introduced theserver noticeuser mode, the ability to re-

ceive server notices. When set, the user was receiving all notices that IRC operators also

received. If for example an IRCop issued a kill, all these users were receiving a notice like

29See above chapter 4.3.1.
30For a description of these modes and command, see for examplePioch (1993) (section 2.4, ”Channel and User

Modes”).

138

7.3 Notices and Logs

*** Notice -- Received KILL message for user123. Path: svr3!svr 2!svr1!someOper

informing them on a/kill issued by the IRC operatorsomeOper for the useruser123 .

So beginning with this server version, users had access to the same notices that before were

reserved to the IRC operators.

The feature was implemented through a change in thesendto_ops() function. Where

before all users tagged ’operator’ was sent the message, nowall users tagged ’receives server

notices’ were sent it instead, and no distinction between users and IRCops were made any-

more.

The server notice mode allowed user only to either receive all notices, or none at all.

An functional expansion of the reception of notices by userswas made in server version

irc2.8.21+CSr20 (Jan. 1996). Now every notice is subsumed by the coders under one of

six categories. Users and IRC operators can subscribe to thecategories, and then receive the

respective notices.

Two of them can only be received by IRC operators:

• (no name): Notices which are sent to all IRC operators. These include failed IRCop

authorizations, IRCop addition to K-lines (command/kline 31), and reaching maximal

numbers of connected clients and servers.

• C-mode: Only for IRCops, but they can opt to not receive them. When subscribed, IRC

operators are notified of every successful client connection.

The remaining four modes can be subscribed by any user:

• K-mode: A notice for every issued/kill command.

• F-mode: A notice for every nickname collision (a nick change or nickregistration col-

lides with an already used nick32).

• R-mode: A notice for every client connection rejection by a server.Rejection can occur

on various conditions, for example a prohibition to use bots, to connect more than once

to a server33, or limitations on the username format34.

• U-mode: A notice that the maximal number of allowed client connection to a server has

been exceeded.

In this way, users and IRC operators can each decide on the kind and amount of server-

generated notices that they receive, instead of receiving either all notices or none at all.

31See above chapter 5.3
32See above chapter 6.1.1.
33These multiple connections are calledclones; see below section 7.4.2.2.
34Using special characters, or mixed case characters.

139

7 Controlling the Controllers?

7.3.2 Logging

Logging, i.e. saving IRC messages to a file for later review, can occur at various places in the

IRC. Generally every user can log her conversations throughher IRC client program35. In this

way, log files are used to save conversations for retrieval inweb sites etc. As example, the

Undernet opschool36 saves logs of its channel operator courses which then can be downloaded

on its website37.

More important than user log files are those which the server itself generates upon issued

commands, or system status events etc. Due to its nature as server-written files (similar to

the configuration file), access to them is limited to the IRC administrators. They therefore

are a control tool of IRC administrator which allows her to replay events, for example what

happened in her absence. Server log files are a valuable tool to control the actions of the IRC

operators.

As example of server logs, logging of IRCop actions are introduced in server version

irc2.8.5 (April 1993), where every IRC operator authorization could be logged to a file, and,

using the Unix-provided ”system log” facility38, /kill , /squit , /connect (server con-

nect) and (again) operator authorization39. As other additions, irc2.8.21+CSr20 (Jan. 1996)

specifically logged failed IRC operator authorizations40, and hybrid-4.3 (Aug. 1997) the

/kline command41.

Similar to the notices above, although on a smaller scale, a tendency to collect more in-

formation about events can be observed. Successively, the coders have added new logging

facilities to keep the IRC administrator updated about whatthe IRC operators have done. And

since the logs are only accessible by the IRC admin, they can be seen as the most accurate

record of events.

7.4 The Undernet UWorld Service

This last section of the chapter presents a comprehensive system of power and control, im-

plemented in the Undernet network, known as theUWorld service. As the name indicates,

it is a service bot similar to the channel service bots reviewed above42. In contrast to these

35The show case in section 7.1 above is based on the log file of thecomplaining user, large parts of which was
attached to the mail that he sent to the mailing list.

36See above chapter 6.3.2.
37http://cservice.undernet.org/main/opschool/
38The ”syslog” facility available on Unix operating systems allows processes to write log messages to central

log files.
39[irc2.8.5/include/config.h:201-328]
40[irc2.8.21+CSr20] (Jan 1996)
41See above chapter 5.3.
42Chapter 6.3. This similarity goes even further since one of the services reviewed there is the X/W channel

service bot which has strong connections to the Uworld bot.

140

7.4 The Undernet UWorld Service

though, the UWorld offers its commands and functions as expansion for IRC operators’ chan-

nel support duties. As we have seen above, this user support is generally considered the least

important duty of IRC operators, so there are only few tools available to them. By instituting

UWorld, the Undernet departed from this philosophy, instead providing a number of com-

mands and automatic functions to UWorld-authorized users (not necessarily IRC operators

themselves) to cope with channel-related (and other) issues.

This case study first gives an overview of the UWorld service,its basic setting (section 7.4.1),

followed by the main functionalities (section 7.4.2). Then, both the user access system (sec-

tion 7.4.3) as well as notices, logging and information means as control (section 7.4.4) are

examined.

7.4.1 About the UWorld Service

UWorld is a service bot, similar in working to the bots and services examined above43. From

one central place in the network, it provides commands and other functionality not available

by the servers: the ability of IRC operators to interfere in channel affairs, issue netwide bans,

and actively fight specific user behavior (flooding, clones) deemed an offense by the Undernet.

According to a historical account of the Undernet, UWorld appears to have been present

from the start on44. This may be not coincidental, because the creator of UWorld, Daniel

Mitchell (”WildThang”) was one of the founders of the Undernet. It seems though that the

functionality had not been widely known for some time:

”There’s a long debate over the existence and use of Underworld (Underworld was the server

name, UWorld was the bot name). It had been linked since the norman* server was first linked

back in December 1992, but many opers and admins didn’t know what it was for. It was agreed

that it provided necessary and helpful services”45

Besides its functionality, a main ”characteristic” of the service was the non-availability of the

source code. Mitchell did not release the UWorld code into the open source, but instead sold

binary versions of UWorld through his company, ChatsystemsInc. This may be one of the

reasons why there only sporadic mentions can be found of the service, and no documentation

or detailed functional descriptions.

The mentions are as short as the following:

”[On what an IRCop is] IRCops also have the ability to use Undernet’s services like UWorld,

EUWorld, and UWorld2 in attempts to keep Undernet together as a network.

43See chapters 6.2 (bots) and 6.3 (services).
44See quote below, according to which Uworld linked to the Underworld in December 1992. Undernet formed

itself at the same time.
45Mirashi and Brown (2003): ”[Uworld] had been linked since the norman* server was first linked back in

December 1992” (Undernet formed itself in late December 1992).

141

7 Controlling the Controllers?

”[Secondary duties] may include [...] using UWorld, UWorld2, or EUWorld to resolve channel

problems.”46

The UWorld code went through three revisions, but technicalproblems as well as deliberate

attacks on the service led the Undernet principals to think about alternatives. One such al-

ternative was EUWorld, a independently programmed, but functionally equivalent to UWorld

which provided the services mainly on the European side of the Undernet. Later, another alter-

native emerged in form of an open sourced generic service botframework named GNUWorld47

which offered to replace both UWorld (as well as the X/W channel registration service). In

May 2001, the UWorld replacement GNUWorld ”CControl” was ready, which Mitchell op-

posed to at first. But as problems with the UWorld furthered, CControl was connected to

Underworld first in December 2001 to replace EUWorld, and finally in May 2002 also on the

US side, replacing UWorld which delinked in April 2002.

Although the source code of UWorld was not released to the open source, Mitchell did

release the source code of an older version, because ”numerous people have shown lots of

interest in obtaining it”48. As for the code itself, he explicitly points to the poor quality of the

code, and the lack of documentation:

”This code was hacked/thrown together over about 7 years of tossing ideas around, learning more

about C, and is quite honestly NOT something I would dare to consider professional quality

code.[...]I apologize for the lack of documentation or instructions.”49

Despite these claims, I have based the following explorations on this source code, partly be-

cause no other version was available, and partly because, developed as a closed source soft-

ware, it includes some interesting «code» structures whichmight not be available in openly

developed software50.

7.4.2 Functionality

The main functionality of the UWorld can be roughly separated into two categories:

COMMANDS: UWorld offers a number of commands, such as banning users, or changing

channel settings or membership.

46Undernet-User-Committee (2001)
47http://www.gnuworld.org/
48UWorld 2.0+wild source code, file [uworld/README]
49ibid.
50It could be interesting to compare the UWorld code with its successor, the GNUworld CControl module. Next

to «code» governance differences, such a comparison might for example support the results given by Kesan
and Shah (2002, 2003a) who argue that different institutions (they studied university, firms, consortia, open
source movement) incorporate different value sets into thecode.

142

7.4 The Undernet UWorld Service

AUTOMATIC FUNCTIONS: UWorld traces all activities in the entire Undernet, and can initi-

ate actions according to its settings. This includes denying entry to banned users and

detecting clones (multiple user connections from one host)and floods (rapid succession

of data being sent over the network).

7.4.2.1 UWorld commands

The commands available through the UWorld are notable as they break with many philoso-

phies and policies upheld in other IRC networks through the server code: Direct channel

interference by IRC operators and network-wide bans were both not available, although there

was no technical reason which would have hindered their implementation (as the UWorld it-

self shows). The first two subsections below trace the implementation of these functionalities

in the UWorld.

But the two other functionalities presented here are as notable as the first ones: The abil-

ity to ”masskill” may be comparable to the simple/kill command, but ”nuking” users,

flooding users with messages for the purpose of disconnecting them, definitely is not. An-

other command, ”mycmd” allows to submit arbitrary commands, circumventing any UWorld-

implemented control structures (validity checks, notice and log facilities), and therefore can be

seen as the most powerful command in the UWorld, for which onecould imagine many uses

with strong governance implications, as it hands the unchecked power of the UWorld into the

hand of the issuer. The existence of the latter two commands might be attributed to the lack of

an open source peer review.

Channel related commands

Most IRC networks follow the principle of no-interference in channel affairs, as long as the

network stability is not affected. But apparently this has not stopped IRC officials to interfere

in an indirect way, as shown above51.

UWorld implements a number of commands which allow todirectly manipulate channels

in various ways: There are commands which override any channel modes set by channel

operators (commandopcom mode); the commandsclearop andclearbans delete the

list of channel operators and the channel ban list, respectively. As for the users of a channel,

opcom kick allows to exit any user from a channel,deop takes channel operator status

away from the user, andreop gives channel operator status to a user. In this way, any aspect

of the channels (channel mode, operators, membership) can be controlled from the Uworld.

From the technical perspective, the UWorld actions do not need any special provisions on

the IRC server side. The UWorld commands are converted into appropriate server messages

and sent into the network. Since the UWorld is identified by the others as an IRC server itself,

51The show case in chapter 7.1.

143

7 Controlling the Controllers?

all such commands are readily accepted without further authorization checks. The only user

authorization which takes place is that of the UWorld itself52.

Besides the power that UWorld gives its users over channel affairs, the other rationale to

implement these commands are its use by the X/W channel service53. Rather than enforce

its policies itself, the X/W service connects to UWorld and uses its commands. This relieves

X/W from having to duplicate the commands and services already offered by the UWorld, as

well as the control structures (access control system).

G-lines: Undernet-wide user bans

In chapter 5 I have shown how long term sanctions – K-lines – have been user entry denials

for one server, initially to be issued only by IRC admins, only later one to be given limited

access to for IRC operators (/kline command, chapter 5.3). The UWorldgline command

breaks with both principles: It allowsUWorld users(which do not necessarily have to be IRC

operators) to issueUndernet-widebans (called G-lines54). These G-line bans can be managed

only through the UWorld: although G-lines are active in the IRC servers next with K-lines,

they can only be set or changed through the UWorld; there is nodirect access of IRC admins

or IRC operators to the G-lines in their own server.

G-lines are time-limited: UWorld code sets a limit of ten days for a ban. Interesting here is

the immediate sanctioning function built into the command:If an UWorld user issues agline

command with a duration longer than ten days, then the UWorldimmediatelysanctions this

user by g-lining her for twenty days. UWorld users with a veryhigh access level (see below)

though are exempted from the ten day limit, they may issue G-lines with arbitrary duration.

As another important detail, G-lines are associated with two configuration files in the UWorld:

the G-line file, and theG-line exceptionfile. Every time agline command is issued, it is

also saved to the G-line file. In case of a restart of the UWorld, this file is read in, thereby

preserving the G-lines in case of disruptions. Also, UWorldadmins55 can change G-lines by

directly editing this file. And similar to the exceptions to the K-lines in the IRC server56,

UWorld allows its admins to supply an G-line exception file: none of the users or user groups

in this file can be G-lined by UWorld users.

Note the subtle differences in control over these functionalities, through the interface offered

to these two files:

• G-lines can be issued by UWorld users and are automaticallyaddedto the G-line file.

52See below section 7.4.3.
53See above chapter 6.3.2.
54This is confusing since ”G-lines” are not configuration lines in an IRC server config file. The name is instead

derived from the functional similarity to K-lines.
55Not Uworldusers. This is similar to the difference between IRC admins and IRCoperators: Only the Uworld

admins have access to the file system of the host where Uworld runs, and can therefore change the G-line file
(as well as all other such configuration files).

56E-lines; see above chapter 5.3.2

144

7.4 The Undernet UWorld Service

But that file can only beeditedby the UWorld admins; deletion of G-lines occurs auto-

matically after the set duration.

• Exceptions may only be made by UWorld admins by editing the G-line exception file;

no command interface exists which would allow UWorld users to change its content.

Technically, the IRC server code has been changed in order toaccommodate the G-lines. But,

as mentioned above, neither IRC admins nor IRC operators have direct access to them on their

server, but need to access them through UWorld, an interesting exception from the principle

of absolute control that the IRC admin has over her own server.

Kills, masskills, and nukes

The first two of these commands are rather a ’convenience’ function for IRC operators, but

give UWorld users who are not IRC operators the same functionality: Thekill command is

the same as a/kill , whereasmasskill allows to provide more than one user or one user

group at once, living up to its rather disgusting name.

More noteworthy than these commands is thenumnuk command: It allows to nuke57 a

user, to send hundreds of messages in rapid succession with the intention to disconnect her

from the server. Nuking users is considered a severe offensein the IRC:

”[Are nuking allowed in Irc?]

”Nuking are definitly not allowed in IRC.If anyone caught nuking people he/she will have a

straight ban from the sever by an IRcop.Ban means a forever ban from that sever,meaning you

can never enter that sever again. So please think twice before you want to do this”58

Even among those who might consider attacks in the IRC as not per se illegitimate, nukes have

a low standing:

”Nuking is not clever and certainly not ’3lit3’(elite) unless you wrote the software yourself, or at

least designed it for someone else to write and compile. And nuking is never as big or as admirable

as being able to win a battle intelligence and wit. Nukers aregenerally the tools of lamerz who

have no other means to get notice and respect.”59

One can only imagine that this command has been implemented to simulate nuking attacks

in order to design safeguards against it. As indication of this intent stands the fact that this

command is only available to UWorld users of the highest authorization level (see below).

57This term is sometimes interchangeably used with flooding. Nuking though is generally used for user floods,
whereas flooding also occur in channels, or against servers;also the intention of nuking is generally described
as disconnecting users.

58http://www.geocities.com/adazmy/Whatirc.htm (2002-08-07)
59http://www.geocities.com/adazmy/Strategies.htm(7 Aug2002)

145

7 Controlling the Controllers?

Mycmd – A command to execute arbitrary commands

Commands like themycmdcommand can be often seen in software which is in the process of

development, as developer back door to the system:mycmdallows to send arbitrary messages

to the UWorld.

With normal UWorld commands, the service receives the command string and the parame-

ters, constructs a well-formed60 message string, and sends this string to the appropriate targets

(servers, users). In addition, it executes various checks (authorization etc.) as well as con-

trol mechanisms (notices to others; logging etc.). In contrast, themycmdcommand sends the

given parameter stringverbatimout to the servers; neither message string construction nor

checks etc. are executed.

For example, an UWorld user would issue the command in the form:

gline 600 anuser@anhost.com Test

UWorld transforms it into the message string

GLINE * +anuser@anhost.com 600 :Banned

(+anuser@anhost.com) until 1104534600 (Test) 61

and send this string to all Undernet servers, resulting in a G-line in all servers for that user.

Also, the gline function would check a number of conditions,create log entries, and send

notices to operators.

With the mycmdcommand, the issuer gives the second message string as parameter, and

the effect is the same as in the first command string: agline is issued. The difference is that

all condition checks, log entries, notices part of the command processing inside the UWorld

are circumvented in the second case, since no command processing takes place.

Therefore, themycmdcommand is the most powerful command in the UWorld: it allows

to issue arbitrary commands which are then send with the authority of the UWorld service bot

to the servers and users, but without any built-in checks, notices or logs. The only condition

built-in to mycmdis that only UWorld users with the highest authorization level are allowed

to issue this command, which is quite understandable. Still, neithermycmd nor numnuk

commands would be imaginable in an open sourced program.

7.4.2.2 UWorld automatic functions

In addition to commands issued directly by the users, UWorldincludes a number of functions

which are automatically executed based on some set conditions. As service bot, UWorld has

access to the same global state information available to allIRC server in the network, and

60I.e., conforming to the appropriate communication protocol.
61The whole string actually consists of only one text line, andhas been separated into two to fit into the text

layout.

146

7.4 The Undernet UWorld Service

receives all network messages. UWorld can therefore be instructed to act in several ways on

such messages. Examples implemented in UWorld are given below: Dealing with clones and

flood protection.

Dealing with Clones

When more than one client from one host connect simultaneously to an IRC network, these

clients are calledclones. Clones are considered offensive in IRC networks:

”I) Clones can be loaded to all attack one target with a flood ofdata, usually in the form of excess

DCC requests or ICMP data packets. Many Floods are only effective when used by 3-4 at once.

”II) Clones can use your nickname when you are offline to causetrouble and start a war in order

to ’tarnish’ your name.

”III) Clones can be ’cloaked’ behind your nickname so that, to everyone else, whatever they do

seems as if you had done it.”62

UWorld provides a clone checking facility by tracking the number of clients for each site

connected to the network. It can be directed to react in several ways:

• User warning: UWorld sends back a message to the user who exceeded the allowed-

clients-per-host count a text which looks like this:

”WARNING: Multiple connections from a single user host are considered clones. If this continues,

you risk being banned from the entire Undernet. (Think aboutit.. Is it worth it?) Undernet will

not tolerate flooding or clones. Your host has been added to the logfiles”63

• Group notice: A notice is sent out to a special oper-only channel that a possible clone

has been detected.

• Auto-sanction: The connecting client is automatically glined: the clientis disconnected

from the network, and a netwide entry denial for 10 minutes issued.

Also, UWorld manages a number of lists which further influence the conditions and actions in

case of clones:

• A list of hosts is kept from which no clones are allowed at all.This list can only be

changed by editing a UWorld configuration file. The UWorld command interface only

allows to examine the list (showshost) and to reload the file (loadshost).

• Another list contains all hosts from which clones are alwaysallowed. Again, this list can

only be changed by editing a configuration file, and the command interface is limited to

examination (showmhost) and reloading (loadmhost) of the list.

62http://www.geocities.com/adazmy/Strategies.htm(2002-08-07)
63Uworld 2.0+wild, file [uworld/nicklist.c], line 1246

147

7 Controlling the Controllers?

• A third list contains all hosts which are automatically glined, independent of the current

clone-related setting. As with the lists above, this is configuration-file only changeable

(commandsshowagl andloadagl , resp.)

Further functions are implemented into UWorld, suggestingthat this feature has received much

attention in design and implementation, and must have been of quite some importance for the

Undernet officials.

Flood protection

This feature is a self-protection mechanism for UWorld. It protects the service bot against

being made non-responsive because it is flooded with (bogus)service requests. Basically it

consists of recording the number of requests made in a given time frame, and if this num-

ber exceeds ten requests, the originating client is disconnected from the Undernet (kill).

This feature can be activated or deactivated from the UWorldcommand interface (command

floodprotection). With another command (floodlog), UWorld can be directed to

write every request that it receives into a special log file. This allows the UWorld admins to

inspect the flow of requests, and initiate appropriate actions against flooders.

7.4.3 UWorld User Access

Given the various functionalities offered by UWorld, it comes at no surprise that the coders

have implemented an access control system to UWorld. The main features of this system

is a level-based access to the commands, similar to that of the channel services64, and its

independence from the normal IRC operator authorization.

The access to commands of the UWorld is determined by a level value assigned to each user.

Normal Undernet users have an access level of zero (0) which means that access to UWorld

is altogether denied. Negative access levels even can trigger further actions, such as being

automatically banned from the Undernet. Positive values give access to UWorld commands,

with higher levels authorizing more commands. In addition,some commands require IRC

operator status in the Undernet on lower levels.

The levels are written into a special UWorld user list. It contains all users who have a status

in UWorld different from the normal Undernet users status (i.e., level zero). On startup (and

upon thereload or loadusr commands) the list is read in from a users configuration file;

UWorld admins therefore can give users access to UWorld by adding them with an appropriate

level to this file. While UWorld is running, a command interface allows changes to this list:

the commandaddusr adds a user to the list, with the given access level. Similarly, remusr

removes a user entry.

64See above chapters 6.3.1 and 6.3.2.

148

7.4 The Undernet UWorld Service

A special case is the IRC operator status, which is treated asindependent of the level system.

Normally only set when a user is IRC operator, a non-operatoruser can be assigned IRC

operator status for the UWorld by issuing themakeop command. This status is valid only

inside the UWorld; but the powers given can be similar to thatof a normal IRC operator, so

that this status can be considered an ’UWorld IRCop’ one.

In order to gain access to the UWorld commands, a user authorizes herself with thevrfy

command. If this user matches an entry in the UWorld user listand has provided the correct

password, she is now recognized as authorized user and can further issue UWorld commands

according to the access level given.

UWorld distinguishes roughly six access levels, denoted intable 7.3. As usual, with higher

level comes access to more and more powerful commands. The above mentioned all-purpose

mycmdcommand for example requires the highest level 10.

Table 7.3: Uworld commands and access level

Another interesting feature is the ability to deny IRC operators access to UWorld. The

commandopersuspend suspends an IRC operator’s access for a given duration, if the

IRCop has access level 7 or lower. Any user with level 8 and up cannot be denied access to

the UWorld.

7.4.4 Control in UWorld: Information, Notices, and Logs

As the description so far has shown, the UWorld service expands the power that an Undernet

official can have inside the network, allowing its users to change channel settings, issues bans,

etc. To control the use of its power, the coders of the UWorld have implemented control

mechanisms, similar to those already examined in the IRC servers: In addition tonoticesand

149

7 Controlling the Controllers?

loggingmechanisms, access toinformationis equally important, as the UWorld is a centralized

service, and therefore information not as readily available as in the distributed server network.

Information

UWorld offers a little over 20 (out of 122) commands which areused to get various informa-

tion, from a help text and UWorld version string to the contents of the many access lists. The

amount of information depends on the access level of the user.

On level 1, the default level for IRC operators, there are only a few informational commands

available. The three important commands areusers , which shows the list of UWorld users

including their access level,showbans , which lists all active glines, andclones , which

lists all hosts that UWorld considers to have clones (multiple simultaneous client connections

from one host).

For further access to information, users need level 6 or higher. Level 6 for example allows

to see the list of all oper-only channels managed by the UWorld, and also the list of the

last 15 commands that were issued through the UWorld. Level 9gives access to almost all

lists managed by UWorld: The list of auto-glined hosts, the hosts from which no clones are

allowed, and the hosts from which clones are allowed; the list of suspended IRC operators and

suspended channels; and the list of potential flood hosts. Finally, uses with the highest level

10 are allowed to see the list of every host that UWorld knows of.

Taken together, IRC operators are given the basic information (user list, active glines, possi-

ble clones), whereas for further status information of the UWorld, at least level 6 is necessary,

which has to be explicitly assigned by an UWorld user of level9 or 10.

Notices

The main source of information about actions of UWorld are sent via notices, special messages

to a specific user group or a special channel. UWorld employs two main ways to send out

notices: wallops and #UWorld.floods.Wallops, short for ’write to all ops’, sends a notice to

every IRC operator logged into the network. This allows the IRCops to stay informed of the

UWorld actions.

The other way is the UWorld-managed channel named#UWorld.floods. This is a oper-only

channel, that means only IRC operators (and those UWorld users assigned quasi-oper status)

may enter this channel. As with the wallops, UWorld sends a text line if it executes certain

actions.

In addition to these two main ways, there are a few commands where users connected

through a DCC connection to UWorld receive a notice. The following table lists all commands

which trigger a notice, together with the level needed to issues the command, and the kind of

notice sent by UWorld (table 7.4).

Wallops are the default method to send out notices. The channel method as well as the DCC

150

7.4 The Undernet UWorld Service

Table 7.4: Uworld commands triggering notices

notices are used only for a few commands. Also, easily detectable from the table are the most

powerful commands on the lower levels:clearchan , gline , and bothopcom commands

trigger both wallops and #uworld.floods channel notices, informing both recipient groups.

Not so obvious is the distribution of notices in relation to the access level of the command:

While the important commands on level 1 + oper are at least walloped (6 out of 25), in the

higher levels fewer ones send out notices (on level 8: 4 out of15; on level 9: 5 out of 32). On

the highest level 10, only theexit (stopping the UWorld process) sends out a DCC notice;

none of the commands are walloped or sent to the special channel.

Logging

In addition to notices, UWorld maintains a number of log files, some of them all the time, some

conditional to activation via UWorld commands. None of these log files are accessible through

the command interface, therefore only accessible by the UWorld admins. In the available code

version though, most of the log facilities are not fully implemented, but only stubs with no

actual function. Six logging facilities are fully implemented, three of them are always turned

on, one can be disabled at compile time (a debug log), and two can be explicitly turned on or

off via the command interface.

Of the three logs always turned on, the first one is a global logging facility recording every65

UWorld command received, including the issuer, all parameters and a timestamp. This allows

65Almost: the commandsdccwall , wall , dmsg, dlis t, dwho, andumode are ignored.

151

7 Controlling the Controllers?

to replay the whole usage of the UWorld service.

The other two logs are similar, but limited to specific commands: One creates log files for

each occurrence of thegline command. It is obvious that this must have been of importance

for the coders and UWorld admins: One file contains all data ofeachgline command issued

in one day, with the date as part of the filename. This allows the admins to check all glines

issued on one day. The other log records every KILL message sent over the Undernet, which

includes those issued by IRC operators with the/kill command. So both logs together

allow a good overview of both short-term and long-term banishments in the Undernet.

These logfiles are only accessible to the UWorld admins; noneof the other officials, includ-

ing IRC admins or IRC operators, have access to these files.

Next to the debug log, which is similar to the general log file,there are two which again

log only specific situations, corresponding to the above mentioned functions: Flooding, and

Clones. The flood log is similar to the general log file: it records every message received

by UWorld. But in difference to the former, the flood log must be turned on explicitly via a

specific UWorld command (floodlog , level 8 command); in addition, the log is written to

a distinct file. I assume that the log was turned on when a flood against UWorld was detected,

and turned off afterwards.

A similar mechanism has been implemented for clones. This log records every time that

a new user connection is considered a clone (multiple connection from one host). This log

recording is bound to further conditions: It must be compiled into UWorld (via define di-

rective, per default turned on), the log functionality mustbe turned on (tsc command), and

UWorld must consider the new connection a clone (which can betuned in various ways).

In any case, this allows the UWorld admins to review which connection attempts UWorld has

judged to be a clone; such information can be used to fine-tunethe clone detection mechanism.

In sum, UWorld employs a number of logs to trace its general operation (general log) as well

as specific commands or situations (glines and kills; floods and clones). Logs can either run all

the time (general log, glines, kills) or turned on or off through the command interface (floods,

clones). In the case of UWorld though, none of them is accessible through the command

interface, but can only be accessed by the UWorld admins.

Summary – Checks and Balances for IRC Operators

IRC operators are the most important officials in the IRC, where they manage the day-to-day

operations, help to maintain the server and the network, andto support the users. For this,

they have access to some privileged commands. The social status of IRC operators in the IRC

appears to be contentious, apparently due to the non-transparent way that they are nominated,

and the discrepancy of how they should act, and how they actually do.

152

7.4 The Undernet UWorld Service

Previous chapters have explored the ways how an IRC administrator can check the power

given to IRC operators. Here a ’softer’ variant of control has been introduced: server notices,

sent to other IRC operators and later also received by users made the actions issued by IRC

operators more transparent in the network. Also, log files help the IRC admin trace back the

actions by her own IRC operators, detect possible misuses orallow evaluation of complaints

from users. The continuous growth in implemented notices and logs in the server versions

indicate that the need for transparency in network events was growing, especially when con-

sidering the growth in usership, with which came the growth in servers, admins, and IRC

operators.

The UWorld service bot of the Undernet, presented in the lastsection, combines many of

the points made in this and the previous chapters into one single show case: A large step in

differentiating the mechanisms available to maintain a social order, with both «code» remedial

rules applied by officials as well as substantive «code» rules; a fine-grained access system,

matched by both notices and logging facilities built-in to ensure some control of the UWorld

users; and last not least, implemented as a centralized service bot, not in a distributed manner

through server code changes.

From the «code» governance perspective, some issues are apparent:

TRANSPARENCY (1): The main rule examples of first chapters—notices and logs—are ex-

ample for«code» procedural rules, as they give the ’controllers’ of the IRC operators

means to obtain information about their behavior. These kind of information are im-

portant in «code» based social settings, as there are otherwise few means to understand

what is happening in the system, who initiated some actions,etc. The description of the

status of IRC operators has give some impressions on the problem to control their behav-

ior, and the apparent lack of success with normative guidelines etc. The «code»-based

mechanisms which enhance the transparency can be a valuablemechanism in promoting

a common understanding of norms, and may lead those in power (IRC admins) to apply

sanctions in case of abuse.

CENTRALITY IN DISTRIBUTED SYSTEM: The simple fact that one central service bot can of-

fer such a breadth of features just by acting different from the other servers shows the

potential of such centralized services. Even more than the channel services reviewed

above, the UWorld offers its users unprecedented power, such as allowing them to inter-

fere into channel affairs, or offering network-global bans, both of which are not available

even to IRC operators as highest ranking official in the IRC network. Also, UWorld has

its own user access system independent of the IRC servers. Inthe version examined,

only the service admin could give users access, again centralizing this power in the

hand of those who run the service.

153

7 Controlling the Controllers?

TRANSPARENCY (2): As for the transparency of the UWorld, a mixed picture must be drawn.

On one hand, the notices and logs implemented follow the trend depicted for the normal

servers: most actions, especially the powerful ones on the lower levels, are accompa-

nied by notices and logs. But overall, due to lack of documentation and access to the

source code, the power of those with high level access appears to have remained largely

unknown. This might have been part of the reason to replace the UWorld service with

another one, this time developed in an open sourced project.

RULE TYPES: Next to transparency as serving procedural means, the UWorld system repli-

cates on the network level what was already pointed out with the registration services on

the channel level: implementation of substantive rules (dealing with clones), and reme-

dial rules (commands), giving Uworld users much finer grained power for example over

channels than were available to IRCops. The Uworld access system as well is similar to

those in channel services. A major difference though in the controller-selecting stems

from the closed source development, combined with the centrality of service bots: The

power accumulated here for the highest access levels is unprecedented, especially when

considering the the lower level powers already encompass anything available in other

networks. «Code»-based constitutive or even only procedural rules fail because there is

no control instance of the controllers.

154

8 IRC Network Issues

In this chapter, two issues on the IRC network level are considered. The first section 8.1 claims

that minor changes in topology and data distribution of a distributed system can have a large

impact on the governance structure of the application. By comparing the IRC to the Domain

Name System, I suggest that at least part of the power struggle of the latter derive from the

chosen architecture, as does the apparent balance between IRC administrators.

The second section 8.2 and last one of the empirical part of this work gives a short account

of the first documented disruption of a network, a major disagreement on a IRC-constitutional

value which led to a split up into two networks. In this way, both networks were given the

opportunity to evaluate the viability of their policy choice.

8.1 «Code» Architecture Shapes the Social

Constitution

In this section, I will explain how the choice of the basic code architecture of the Internet

Relay Chat defines a specific part of the the IRC constitution,the relationship between the

IRC servers and thus between the IRC administrators.

Comparing the IRC architecture to that of the Domain Name System (DNS) I suggest that

detail differences between these two – both chosen out of simple technical considerations –

have large consequences for the relationship between the servers and its administrators: In

the IRC, the architecture leads to a much more balanced powerdistribution than in the DNS,

where the so-called ”root” server(s) and those who manage them hold the most powerful

position of all servers. In this way, the «code» architecture shapes the social constitution of

the application in question.

8.1.1 IRC: Topology, Data Distribution and Technical Ratio nale

The technical rationale of the IRC architecture was determined by one main consideration:

Created at a time (1988) where many links between the Internet were measured inkilobits

per seconds, a real-time communication application had to cope with a limited bandwidth

situation. Thus the prime concern was to minimize the bandwidth needed by the IRC. As

155

8 IRC Network Issues

another factor, the creator Jarkko Oikarinen planned a system which should serve about 100

users1 over these limited data connections (one has to compare thisto the around fifty to sixty

thousand users in the large IRC networks nowadays!).

Based on these considerations, Oikarinen chose the topology of a spanning tree, and a

data distribution scheme where each server holds the the entire network status, constantly

synchronized between the servers.

Topology: Spanning tree

The main characteristic of a spanning tree2 is its lack of cycles between servers: there is no

way between the nodes of such a tree which leads from one node through others back to that

node. As consequence, there is always exactly one way between two arbitrary nodes in the

tree (see figure 8.1).

Figure 8.1: Spanning tree topology

This minimizes the computing cost for the servers (nodes) inthe network: There is no need

to determine for example a fastest or best route once the network is set up. Also such a tree

topology allows for comparatively easy dynamic configuration, i.e. if one host ceases to work,

then the remaining hosts can relatively easy form into a new tree.

Data distribution: Global state duplication and synchroni zation

The second choice by Oikarinen concerns the information about the network topology avail-

able to a server. Again in order to minimize the data traffic and thus the bandwidth require-

ments, Oikarinen chose a technique where each IRC host holdsinformation about the whole

network so that it can decide for each data packet to which other (directly connected) hosts to

forward it to3. Thus only the data packets necessary are sent over the IRC network.

1Undernet-User-Committee (1996)
2See for example Perlman (2000, p.531).
3This resembles the broadcast algorithm that Tanenbaum (1989, p.308) describes in connection with the span-

ning tree. He claims that this algorithm "makes excellent use of bandwidth, generating the absolute minimum
number of packets necessary to do the job". But the disadvantages are the same, as well: "The only problem
is that each [node] must have knowledge of some spanning treefor it to be applicable". In the case of IRC
this knowledge is the state of the whole network which has to be constantly updated in each host.

156

8.1 «Code» Architecture Shapes the Social Constitution

If for example three users connected each to servers A, E, andB (figure 8.1) are in one

channel, then it is not necessary to send the communication data between them to the servers

beyond server E, that is servers F to K. In order to send the messages in such a way though,

server E in the example has to know that there are no channel members in servers F to K. As

soon as for example a user in server K joins the channel, server E has to relay the channel

messages to server K. This way, every server has to have the up-to-date status information

about the entire network.

IRC architecture: Advantages and disadvantages

The advantages of the choice of the IRC – spanning tree and up-to-date global status infor-

mation in all servers – have been mentioned: a low computing cost in determining the path

between servers, and minimizing bandwidth usage by sendingthe messages only to those

servers who need them.

Another not so obvious advantage is a consequence of the datadistribution model: Since

every server holds the same data (network status), none of the server has an advantage over the

others, and thus no single server or admin has a power advantage over others. If for example

a server in the middle (for example server E in the figure above) decides to quit service, there

is no major loss of service (other than a net split, see next paragraph). When server E quits,

server F connects to D and G, creating a functioning network again. In other words, due to

the data distribution scheme, there is anon-hierarchicalrelationship between the servers (and

thus admins)4.

The major disadvantage of this architecture is a general sensitivity for so-called ”net splits”:

As soon as a link between two servers or one server (especially those in the middle of the

network) fails, then the IRC network splits into two parts and has to be reconnected. But also,

these two parts become desynchronized: The status information in one half does not match

the status information in the other half, so that upon reconnecting the two parts, all servers

has to mutually synchronize their global network status information. With a few servers and

tens or a few hundred users, this is no problem; but with fifty servers and ten thousand users,

this becomes a major source of annoyance for the network. In other words, the IRC does

not scale very well. It is only due to the continuous growth incomputing power and Internet

stability and bandwidth growth that the IRC could cope with this problem, but such net splits

are apparently very common and a constant source of disruption of the communication.

4This is a principal statement which skates over details of hierarchical nature: the disruption of a leaf server
(servers with only one connection to another server) affects much less users than that of a hub server (those
with more than one connection). Also, hub servers with a high-bandwidth connection are more valuable as
those with a low-bandwidth connection etc.

157

8 IRC Network Issues

8.1.2 DNS: Topology, Data Distribution and Technical Ratio nale

There are several reasons why I have chosen to compare the IRCarchitecture to the tech-

nology behind the domain name system: The regulatory issuesaround the many aspects of

the Domain Name System (trademark issues, global management of the name spaces) are the

prime example of the Internet governance discussion, so that the term ”Internet governance”

has almost become synonymous with the DNS issue. But also, both IRC and DNS have been

designed out of technical considerations alone, before their respective popularity led to gover-

nance challenges. Above all, both share the same network topology.

One of the main function of the domain name system is the assignment of a host name to

the IP address of that host5. The rationale behind the technical domain name system as known

today was the distribution of the management of this association. Instead of all host adminis-

trator sending name or assignment changes to a central place, and regularly downloading the

updated file (’hosts.txt’) back to the host, the DNS built up aserver system where the data is

distributed in a way so that it ’localizes the changes’: Instead of managing them at one place,

the institutions (universities, companies, Internet providers etc.) which decide on the names

also enter them directly into their ”name server”. In this way, the whole DNS system is always

up-to-date, because the changes are immediately available.

The second feature was the introduction of the hierarchicalname scheme: The name con-

sists of several parts, separated by dots. Each of these parts are managed by a different name

server, with the rightmost invisible ”root” of all names being managed by the ”root” server,

the next top level domain (TLD) by the top level domain servers, etc. down to the level of the

institutions which name single hosts. Taken together, these structures determine the topology

and data distribution of the DNS.

Topology and Data Distribution

The DNS server topology is a tree structure, and thus shares the same characteristic as the

IRC topology (no cycles in the path, exactly one way between servers). Now if one has seen

pictures of the DNS server topology, one might wonder why theabove figure 8.1 of the IRC

does not resemble a ”tree”, with one node on top, and the others growing in a triangle form

down from the root (see figure 8.2).

The reason is that the graph of the IRC topology and this ’tree-like’ graph are identical in

their interconnection, but the servers just in different positions in the pictures. For example,

server E in both examples connects to servers D, F, and G, etc.And the reason that the DNS

network is depicted in such an hierarchical form lies in its data distribution model.

The data distribution derives directly from the said intention of the system: to allow a dis-

tributed editing of the name-IP address assignment in the context of the domain name scheme.

5See for example ”Domain name system”, Wikipedia 2005-04-25(http://en.wikipedia.org/wiki/Domain_name_
system).

158

8.1 «Code» Architecture Shapes the Social Constitution

Figure 8.2: Tree topology as a ”tree”

On each domain level, a server is assigned one or more unique names of this level: on the top

level domain, each of the names ”com”, ”org”, ”net” etc. are managed by one server. Simi-

larly, the names of the next levels are also assigned to a server. Finally, on top of the server

tree sits the ”root” server.

The system now works as follows (see figure 8.3): To find out theIP address of a domain

name, the user queries6 a so-called ”name resolver” which is the DNS client of the user host;

the name resolver now directs the query to the root name server7.

Now the data distribution scheme comes into play: The root server only holds the addresses

of the top level domain servers. The only duty of the root nameserver is the redirection of

the query to the appropriate top level domain server, so for adomain name ending with ”de”

(for Germany), the root server forwards the query to the nameserver which manages the ”de”-

domain. Similarly, the top level domain server only redirects the query to the next level server.

This goes on until one server has a match for the entire domainname of the query: then the

associated IP address is returned to the user.

The DNS data distribution scheme therefore differs considerably from that of the IRC:

whereas in the latter, all data is duplicated in and synchronized between all servers, the actual

name to address assignment data is only held by the lower level name servers. The upper level

servers including the root server only hold the IP addressesof the DNS servers on the next

lower level, which is a fairly small list.

6Indirectly, through the program that is used, such as a web browser etc.
7Normally, the name resolver queries first the local name server which in turn queries the root server.

159

8 IRC Network Issues

Figure 8.3: Querying a Domain Name

Advantages and disadvantages

The principal advantages and disadvantages immediately follow: The changes in the names

and assignments are done locally, and do not need any propagation mechanisms to other

servers, since every query directly comes down to the serverwhich holds the name and as-

signment8. This also means that there are no synchronizing problems like in the IRC. Every

server only holds the information necessary for its role in the DNS tree.

The main technical disadvantage is the necessity for queries to start at the top of the DNS

server tree, i.e. with the root servers. This means that in principle every single query in the

entire Internet has to pass through the root server, which leads to ten thousands of queries per

second9; the system load of the lower level servers should be considerable as well. Conse-

quently, many technical improvement strive to lessen the load, such as caching mechanisms,

distribution of servers10, etc.

8.1.3 Comparison between the IRC and DNS architectures

The previous description of both the architecture of the IRCand DNS has been limited to the

technical side. Both design choices have their clear rationales, and serve them well, despite

the disadvantages which come with the choices.

Both also share the same topology, but differ in the distribution of the data: In the IRC,

all servers have the same data (the network state), and in order for the IRC to function, this

8Here again a principal statement is made, which skips over details such as caching mechanisms.
9A RIPE report from 2003 speaks of two to three thousands of queries per second in two (of the thirteen) root

servers: http://www.centr.org/docs/2003/09/centr-ga19-ripe.html (2005-04-25).
10”The root” is actually served by thirteen root servers, distributed over the world.

160

8.1 «Code» Architecture Shapes the Social Constitution

data has to be synchronized between the servers at all times.In contrast, the most frequented

servers in the DNS network only hold a small part of the entiredata (higher level domain

servers which only hold the addresses of the next-lower level domain servers), while the name-

to-address assignment data is held by the many lowest level servers. But in this system, the

data of the higher level name servers is much more important,as they determine the way which

the user queries take in the server tree. It is in the sole discretion of the root server (and thus

those who control it) which server receives all queries for the respective top level domain;

the change of one IP address would redirect all data for a whole top level domain to another

server.

When one reviews the manifold articles about the political struggle about the control of the

domain name system, it becomes apparent that there is one major point of power, the key to

the entire domain name system:

”The Internet relies on an underlying centralized hierarchy built into the domain name system

(DNS) to control the routing for the vast majority of Internet traffic. At its heart is a single data

file, known as the root. Control of the root provides singularpower in cyberspace.”11

Ultimately, the combination of the tree topology coupled with the data distribution scheme of

the domain name system ensured that those who control the root servers hold the ultimate key

for the entire system.

The situation in the Internet Relay Chat is an entirely different one: Although employing a

tree architecture as well, the distribution of all data between all servers ensures that in case of

a failure of one server, all other server can recover by reconnecting the remaining servers to

form a new network (with following resynchronization of itsdata). Therefore, the topology

and data distribution create a network ”where each server acts as a central node for the rest of

the network it sees”12, so all servers can be considered root from their point of view.

8.1.4 Architecture as Constitution

I conclude that the technical architecture is an important factor for the governance of any In-

ternet application like the IRC or the DNS. For the latter, itmight be interesting (although,

given the power struggle surrounding this issue, only of academic interest) to try out alterna-

tive topology and data distribution designs for the domain name problem which go beyond

providing alternative or multiple roots13. In the case of the IRC, the equal distribution of pow-

ers through the topology and data distribution architecture, despite their technical shortcoming

of poor scalability, has to this day served as a stable constitution of this Internet application.

11Froomkin (2000, p.1)
12Kalt (2000a, p.3)
13See Froomkin (2000, p.39) (text surrounding footnote 61). The solutions he suggests though point all to

institutional changes on top of the same technical system: ibid., pp.171-182.

161

8 IRC Network Issues

8.2 The "Great Split": The Forking of Anet and EFnet

The forking of a open source development project into two is widely considered as detrimental

to the project as whole, because it splits the manpower available into two smaller fractions. In

contrast, the history and the current situation of the IRC application and software highlights

the positive side of forks, that is the creation of many different IRC networks with differing

policies and service offerings for the user, and thus more code innovations which – through

the open source property of the underlying code – can spread through the IRC networks. IRC

networks have split up into different networks which are preserved through creating code-

based boundaries. But these boundaries are permeable enough so that innovations can spread

over these network boundaries.

In the beginning of the IRC, there was only one IRC network which was formed by the

initial servers in Finland, those interested in Scandinavia, and the U.S. As of July 1990, 38

servers were counted (see above figure on page 45).

New servers were added by more or less informal coordination. The coordination was

necessary to keep the network stable, that is keep the "distance"14 between the servers as

small as necessary. A documentation file in version 2.1.1 states:

3) HOW DO I GET CONNECTED??

The official Irc-Network coordinators are: "vijay@lll-wi nken.llnl.gov"

and "karl@cheops.cis.ohio-state.edu" for the USA. FINISH and EUROPEAN

sites should contact "jto@tolsun.oulu.fi" and he can direc t you to your

best connection.

Everyone that has mailed me and goes "where should i connect? " I generally

say what is your PING statistic to <some host>?". You will gre atly help

us in the early stage by sending us your PING times to these hos ts when

you first send us mail: [...]15

But this was rather a goal than reflecting reality, as a posting in the (then) main irc mailing list

("operlist") shows:

I) Our primary concern must be establishing proper routing. This can only

be accomplished be creating a WORLD-WIDE backbone of server s. This backbone

should be based on reliability, geographical location, net work affiliation

(SURANET, ARPANET, etc), and IRC administation reliabilit y/dedication. 16

The mailing list contains several efforts to structure the IRC network, i.e. to coordinate the

routing between the servers. But in general, there was no strict enforcement of any coordina-

tion, especially for servers not in the backbone part of the IRC network.

14This is not the geographical distance, but the time that a data packet travels between two hosts on the Internet.
This is called the "ping time", because of the Unix program "ping" used.

15[irc2.1.1/doc/NETWORKING’)]
16Berlo, John J (1990-04-24)Operators READ THIS!!!!!. Mailing list IRClist (1991).

162

8.2 The "Great Split": The Forking of Anet and EFnet

8.2.1 Open-server servers vs. closed-server servers

Among the server administrators, there were two basic opinions about who should be generally

allowed to the network: Open server vs. closed server.

Those favoring open server argued that any server should be allowed without regard to any

formal process or criteria. They wanted to uphold the fundamental principle of openness. In

order to serve this openness principle, the open server proponents also suggested to change

the topology of the network from a tree to a star topology: Every server should connect to one

central server.

In contrast, the closed server fraction argued with security and IRC net stability. If anyone

was allowed as server, it would be to easy to gain the power of an IRC admin17, and thus at the

same time IRC operator status, ultimately giving all users the same power in the IRC network.

As is often the case, there were two small groups of administrators, with a third big group

of admins without a clear opinion towards either side. At first, this conflict was discussed over

months in the diverse fora, IRC channels as well as the ”irclist” mailing list. After the dis-

cussions prevailed over months in without reaching a consensus, the closed server proponents

decided to exclude the open server proponents from their part of the network.

The open server proponents set up a central server at "eris.berkeley.edu", and allowed any

other host to connect to it as server . This network was named appropriately as "Anarchynet"

or "Anet". Those favoring the close server concept renamed their network to "EFnet" for "eris

free network".

As usual in such heated debate, there was a majority of serveradministrator who were not

sure where to go: Anet or EFnet. Some administrator tried to mediate between these nets

by setting up a server which served both Anet and EFnet. Whileit did not clash with the

basic principle of the Anet (on the contrary), it went against the close server concept of the

EFnet. This therefore called for strong action, implemented as «code» rule, first as patch of

the current server version, then as full blown mechanism in the following server version: the

Q-line or "quarantine" line (algorithm 16).

Algorithm 16 ”Quarantine” configuration line (Q-line)
Quarantine lines. These lines disallow connections to the
specified server and drops the link to anyone connecting to them.
Q::they have a server open server:eris.berkeley.edu

Source: [irc2.5.1.bu.08/doc/example.conf:109-111].

This mechanism allows the server administrator to set a server to quarantine, that is to

disallow any connection or data transfer between the IRC network and this server, as well as

17It is important to note that the dispute went around openserverservers, and not openclient servers. With an
server in the IRC network, one is automatically an administrator, while with a client connected to a server,
one is ’only’ an IRC user.

163

8 IRC Network Issues

servers connecting to the net via the quarantined server. Basically it ostracizes the server and

all servers connected to it from the network. The interesting feature of this Q-line mechanism

is that it only works if all servers invoke the quarantine.

It is interesting to see that the Q-line apparently was only used in that incident. Later server

versions still incorporate the Q-line mechanism, but its use is explicitly deprecated. The threat

of reactivation of this mechanism is still prevalent.

The Q-line mechanism allows for exclusion, ostracism from the server community, but with

the high hurdle of unanimous action. Since the network wouldbreak if not everyone invokes

the quarantine, this is a strong hurdle to its use. Here, codeis effectively used as a supporting

mechanism for community binding and decisions.

This event might be an example for Lessig calls the "open evolution” principle18: After it

became clear the the open/closed server conflict could not beresolved through debate, this

conflict was "solved" by proof of concept: each side set up thenetwork they wanted, and let

the undecided server admins as well as the users decide. In this case, the EFnet survived and

thrives today, while the Anet left no traces other than the conflict.

18Lessig (1999c); in an earlier draft dated March 5, 1999 (”Draft 2”), Lessig used the term ”open forking” which
in our context fits better than the more generic ”evolution”.

164

Part III

Some Notes on the Concept of

«Code» Governance

As no better man advances to take this matter in hand, I

hereupon offer my own poor endeavors. I promise nothing

complete; because any human thing supposed to be com-

plete, must for that very reason infallibly be faulty.

Herman Melville, Moby Dick

165

Introduction

This part concludes my exploration of the «code» governanceaspects of the Internet Relay

Chat as a self-organized, self-governed Internet application. I revisit the main hypothesis of

this work that the analysis of the source code of the IRC reveals distinct «code» features, and

that the «code» constitutes a regulation system similar to,but distinct from the legal system.

As this work is exploratory in character, no ready-made theory on «code» governance can be

offered. As preliminary results, the following findings canbe offered: In chapter 9, I reiterate

each key aspects of a regulation system according to the ”LexInformatica” model introduced

above19, summarizing my findings under the appropriate aspects. Chapter 10 summarizes the

findings concerning the five types of rules as introduced above20. Finally, chapter 11 offers an

outlook of further research that could built upon the «code»governance model developed in

this work.

19Chapter 2.3.1
20Chapter 2.3.2

167

168

9 Lex Informatica Revisited

In chapter 2.3.1 I have introduced the con- L e g a l R e g u l a t i o n L e x I n f o r m a t i c aF r a m e w o r k L a w A r c h i t e c t u r eJ u r i s d i c t i o n P h y s i c a l T e r r i t o r y N e t w o r kC o n t e n t S t a t u t o r y / C o u r tE x p r e s s i o n T e c h n i c a l C a p a b i l i t i e sC u s t o m a r y P r a c t i c eS o u r c e S t a t e T e c h n o l o g i s t sC u s t o m i z e d R u l e s C o n t r a c t C o n f i g u r a t i o nC u s t o m i z a t i o nP r o c e s s L o w C o s tM o d e r a t e c o s ts t a n d a r d f o r mH i g h c o s t n e g o t i a t i o n O f f � t h e � s h e l f c o n f i g u r a t i o nI n s t a l l a b l ec o n f i g u r a t i o nu s e r c h o i c eP r i m a r y E n f o r c e m e n t C o u r t A u t o m a t e d , S e l f � e x e c u t i o n
Lex Informatica (same as table 2.1)

cept of ”Lex Informatica” (Reidenberg (1998))

which offers the key concepts of a regulation

system, and compares the legal system and the

«code» regulation system, or ”Lex Informat-

ica”) based on these concepts.

In this section, I apply the results of my em-

pirical analysis to each of these key concepts,

thereby developing the ”Lex Informatica” side

one step further.

9.1 Framework

Reidenberg describes the framework as the ”basic building block” of the respective regulation

system. In the legal system, ”law” functions as the basic building block, and for Lex Infor-

matica he offers ”architectural standards” which ”define the basic structure and defaults of

information flows on a communications network”, with the HTTP standard as one example of

such a building block1.

What defines the basic structure and defaults in the InternetRelay Chat? Beginning with

Reidenberg’s suggestion it is clear that the communicationbetween the components of the

IRC (servers, clients, etc.) have to standardize their communication.

One set of standards, also available for the IRC, are those submitted to an institutionalized

standardization body: Two times, 1993 and 2000, such IRC standards have been submitted

to the main Internet standardization body, the Internet Engineering Task Force (IETF). In

1993, the IRC client-server protocol is published2, and in 2000, four documents describe the

architecture, channel management, client(-server) protocol and server(-server) protocol of the

IRC3. These standards certainly provide an overview of the ”framework” of the IRC.

1Reidenberg (1998, p.570)
2Oikarinen and Reed (1993)
3Kalt (2000a,b,c,d)

169

9 Lex Informatica Revisited

But these documents only provide a snap shot of the IRC setting. As described, the IRC

server code has been continuously changed and updated, withmany major and minor changes

in client-server and server-server protocols, in implementation and functionality. These changes

can be seen as a hallmark of a self-organized and «code»-governed setting like the IRC.

An indication of such adaptations of the client-server protocol has been shown for the

Eggdrop user bot4, where one configuration setting allowed to specify the network to which

the bot connected5, thereby enabling the special feature of that respective network.

The point made here is that, while standards and protocolsas publishedcertainly are an

important part of the «code» regulation framework, often they do not draw the entire picture

of the system. The ultimate reference for the architecture can only be provided by the actual

code of the system, in case of the IRC the server source code.

In «code» governance, theframeworkor the basic building block isthe «code», the software

and hardware of a system. Standards are important, but provide only an approximated view

of the real system.6.

9.2 Jurisdiction

Jurisdiction denotes the scope of the regulation regime inside which the rules are valid and

enforced. In the legal system, the laws are principally defined by a territorial jurisdiction. For

Lex Informatica, Reidenberg provides a somehow vague ”network” or ”network spheres”:

”[T]he jurisdiction of Lex Informatica is the network itself because the default rules apply to

information flows in network spheres rather than physical places”7

Based on the analysis of the Internet Relay Chat, some clarifications can be made.

IRC border (1): Internet Layers

The choice of the IRC asInternet applicationalready includes a «code»-jurisdictional limita-

tion: The IRC is positioned in theapplication layerof the Internet8.

4See above chapter 6.2.1.
5See algorithm 14
6As an interesting thought that may be worth pursuing is the difference here between law and «code»: In

law, the statutory code itself (or a single case) seldom provides a full picture of the legal situation at hand.
Instead, only a thorough document analysis including commentaries, other cases and other secondary sources
can provide a sufficient picture. In comparison, the ultimate source for the understanding of «code» is the
«code» itself, the source code of the software, or the technical capabilities of the hardware.

7Reidenberg (1998, p.570)
8Here I only examine the technical ISO-OSI model. There are also those which are derived from the technical

models in legal scholarly papers, such as a three-layered model in Benkler (2000, p.562) and following Lessig
(2001, pp.23-5), but they add no further insight to the matter at hand.

170

9.2 Jurisdiction

Layering is a commonly used model with networks which helps to reduce the complexity

of its design. The best known9 one is the Open Systems Interconnection (OSI) model10 which

distinguishes seven layers, from the lowest ”physical layer” to the top ”application layer”.

As an application, the Internet Relay Chat is positioned in the topapplication layer. As

consequence, any issues of the lower layers are outside the IRC ”jurisdiction”, out of its gov-

ernance reach. On the other side, any changes in these lower layers may affect the IRC, as it

uses the services that the lower layers provide.

IRC border (2): Application

Inside the application layer, a second line can be drawn between different application11, al-

though these lines can get blurry sometimes.

Generally, applications such as the world wide web, e-mail,peer-to-peer networks each

create their own jurisdictions. Their respective «code» rules are determined by the application

code and the standards and protocols which the code implements. Therefore the IRC with

its server code and the IRC client-server protocol, can for example be distinguished from the

world wide web, with its servers and the http protocol.

But for a specific functionality12, the border between these two can be crossed: one can

imagine for example that an IRC admin provides a web interface13 to her IRC network14.

Also, the example of the CTCP functionality15 inside the IRC shows another blurred line: The

messages are exchanged over the IRC lines, but the actual meaning of the messages lie outside

its scope. This allows for example toestablisha direct Internet connection via the IRC; the

connection itself then is directly between two IRC clients,thereby circumventing the network

for the conversation.

These remark point to the question of how the term ”jurisdiction” can be applied, rather

than giving final answers. But the lines between applicationnevertheless play an important

role in the question of the «code» jurisdiction.

IRC network borders

Finally, ”the” IRC consists of many IRC network which are notinterconnected with each

other. Each of these forms its own jurisdiction. An indication of a ”strong” border is when

the IRC server software between different networks do not interoperate. This might be only

9Another early example, written for the predecessor of the Internet, is the ARPANET reference model: Padlip-
sky (1982, pp.12-3).

10See for example Tanenbaum (1989, pp.19, 528-530), Perlman (2000, p.4).
11A similar argument makes Wu (1999).
12It could be interesting if the concept of ”functional, overlapping, competing jurisdictions” (Frey and Eichen-

berger (2000, pp.4-5)) could be applied to the «code» domain.
13This is not to be confused with so-called ”web chats”, which are single-server chats which can only be used

through the web page interface, and not reached by an IRC client.
14And indeed, a google search for ”irc web interface” shows a number of entries.
15See above chapter 3.1.1.3

171

9 Lex Informatica Revisited

partially intentional, because the implementation of different network policies and feature sets

dictates changes in the server-server protocol, so that lack of interoperability often comes as a

by-product of the functional differentiation between the networks.

The ”jurisdiction” of the IRC is determined by a number of factors:

a) Network: Its position in the application layer according to the network layer model

b) Inter-application: Its position as an specific application, separated by functionality, proto-

cols and code, although these lines can be blurred

c) Intra-application: Inside the IRC, each IRC network forms its own jurisdiction, sometimes

underlined by the non-interoperability of the server software between networks.

9.3 Content

The content of rules in a legal regime sees Reidenberg as deriving from ”statutory language,

government interpretation, and court decisions”16. For Lex Informatica, he sees the content

”defined through technical capabilities and customary practices”17. As example he describes

how the SMTP protocol for e-mail defines the rule that the ”From” field identifies the sender,

with the ”customary practice” of mail servers that this field”pertains to the actual person” of

the e-mail.

The examination of the IRC has shown how the technical capabilities of the IRC server

code builds the foundation of the content of the IRC «code» rules. They determine through

their server-client protocol which features are availableto the users. The server code also

determines all IRC internal structures, like channels, thepowers of IRC operators, etc.

A notable exception from this rule are the service bots18 which as a centralized service in

a distributed server network provide additional capabilities not available through the server

code. Also important are the user bots19 which use the client-server protocol in order to of-

fer features not available through the servers, for examplechanging the channel ownership

policies set by the server. In these ways, the main «code» regulatory content in the IRC is

determined in the server code, but due to its distributed nature, with the server-server and

client-server interfaces present, surprising and unplanned uses are possible, changing the set-

ting which can lead to adaptation in the policies (e.g. by providing official services, like the

channel registration services).

The customary practices are guided, as the name implies, by customs or norms. Indications

16Reidenberg (1998, p.570)
17ibid.
18See chapter 6.3 (channel services) and chapter 7.4 (Uworld service)
19Chapter 6.2

172

9.4 Source

for such norms were in the discussion of the IRC operators’ behavior20, but also in discour-

aging the use of features without removing them from the code21. One could also interpret

the unsuspected uses of existing features, such as user bots, as ”customary practices”, a use

not intended when designed and implemented, but later used in the new, specific way. These

practices form an important element of the dynamics of «code» governance settings.

9.4 Source

The source of regulation in a legal system is given by Reidenberg with ”the state” in which

a ”political-governance process ordinarily establishes the substantive law of the land”. For

Lex Informatica, Reidenberg suggests both ”technologists”, the ”technology developer and

the social process by which customary uses evolve” and who create the ”technical standards”,

and the user who ”adopts precise interpretations through practices”.22

With my «code» analysis in mind, we can sketch a slightly moreconcise picture of the

sources of regulation in the IRC.

The first IRC software, and thus the first set of «code» rules were designed by the creator

of IRC, Jarkko Oikarinen, adopting from other similar applications not only technical struc-

tures, but also governance patterns such as the role of the IRC operator23. Many of the basic

elements that define the IRC remained unchanged from this first version on, such as the topol-

ogy and data distribution, the IRC operator role, channels,etc. Oikarinen thus is not only the

(technical) creator of the IRC, but, from the «code» governance perspective, the ”founding

father” of the basic ”constitution” of the IRC.

The pivotal decision by Oikarinen which determined the ”source” of future «code» rules in

the software was to distribute the IRCas source code package, and subsequently to put the

software under an open source licence24. This created two further sources of changes, next

to Oikarinen: Other coders who contributed to the source code, and by the provisions of the

GPL, made them accessible as source code as well; and the IRC administrators, who have the

power to change any aspect of the IRC server, limited only by the interoperability with the

other servers in the network.

The availability of the source code also has created a kind ofpower balance inside the

IRC: while changes in the server codefor all serversis made by the coders, the adoption

requires the agreement of the IRC admins. This explains why changes in the source code were

implemented so often as configurable options through mechanisms such as patches, #define

20Chapter 7.2
21See the R-lines in chapter 5.2.2
22All quotes from Reidenberg (1998, p.571)
23See above chapter 7.1
24See appendix, chapter 12.7.

173

9 Lex Informatica Revisited

directives, etc.

Being open sourced, coders cannot force IRC admins to adopt these changes, as is common

in closed source scenarios, where lack of interoperabilityor backward compatibility can force

those who run the software to upgrade to a newer version, eventhough it might be not in their

interest. On the other hand, IRC admins have much more freedom to deviate from net-wide

policies, only as long as the interoperability is ensured. Enlarging the source of rules brings

up a different set of governance opportunities and challenges. The kind of openness in the

distribution of the software here is the key aspect.

Another source of regulation is theIRC user. One point not further examined in this work,

but quite probable, is that simple users have made importantcontributions to the IRC soft-

ware development process. This is a basic characteristics of any open source development.

Lessig (1999c, p.113-115) has named it ”universal standing”, giving it the status of a «code»

governance constitutional value.

The IRC user also have been the source of regulation with another «code» mechanism: the

IRC bots. As shown in the example of channel and nickname ownership issues (chapter 6.2),

these bots have been employed to change the policy set by the IRC officials (no ownership

of channels and nicknames), and may well have been a driving force to implement ’official’

ownership policies, such as the DALnet or Undernet services.

In the legal scholarship, such ”user regulation” is often subsumed under the label of ”digital

self-help”25, and in software engineering the users are also recognized to play a more and more

active role in the design and implementation processes26. The IRC underlines the importance

of the ability of users to contribute to the «code» governance, facilitated here both by the open

source code as well as the open client-server interface.

Open sourcing the server code has widened the ”source” for code, and thus for «code»

governance mechanisms, leading to constant contributionsfrom the usership at large.

Another important source of «code» governance in the IRC came through the open client-

server interface which led to the development of the IRC userbots.

9.5 Customized Rules and Customization Processes

This is an important point and a wide field for «code» governance settings. Most hard- and

software provide some kind of interfaces through which the users access the functionality

offered by the technology, and adapt it towards their needs.

For law, Reidenberg offers the legal institution of ”contract” as customized rules: The ability

25See for example Bell (2000).
26See for example IEEE (2004, ch.2.2).

174

9.5 Customized Rules and Customization Processes

of private parties to customize their interactions throughthe process of reaching a contractual

agreement. This inherently also contain another connotation that appears detrimental when

applying this model to the «code»: the notion of the legal system as hierarchical default rule

system, with the contractual relationship a ”deviation” from the legal default:

”In the legal regulatory regime, private contractual arrangements can be used both to deviate from

the law’s default rules and to customize the relationship between the parties. Such deviations

are only available if the law permits freedom of contract anddoes not preclude the participants’

actions”(Reidenberg, 1998, p.571)

In contrast, The IRC is a self-governed setting, so neither ahierarchical 3rd party controller27

as the government exist, nor is it governed by any overarching organizational entity, such as

university, firm, or consortium28. Consequently, I regard the customization rules and processes

on both the level of code development and implementation, and on the level of the use of the

IRC software.

9.5.1 Rule customization on the «code» level

The examination of the IRC source code has shown that the coder have applied various mech-

anisms in order to facilitate governance decisions for those who install the server software. I

have tried to develop a first step towards a taxonomy of these mechanisms by subsuming them

under the four steps where customization of the software takes place: Source code access,

System access, Interface access, and User access.

9.5.1.1 Source code access

The IRC server software is distributed as source code package, an archive file containing all

necessary files in order to build the server program.

There are several reasons for this kind of distribution method. These include:

• Distribution file size: This distribution is the most efficient one: a compressed archive

file containing source code can be many times smaller than a (compressed) compiled

binary program files, and thus takes up less bandwidth. Also,small changes can be sent

as patches (see below), even in e-mails, whereas binary program file patches tend to be

larger. Moreover, it may be easier to mirror a smaller sourcecode archive file than a

larger binary file.

27See Ellickson (1991, pp.130-132).
28See Kesan and Shah (2003b). While the IRC would fall under their category ”open source movement”, it

differs in that the IRC developers and users are much more tighter coupled than for example open source
operating systems, or other application software.

175

9 Lex Informatica Revisited

• Platform adaptation: It might be necessary to make small changes to adapt the software

to the specific configuration of the computer where the software it to be run. The source

code can cope at build time with these differences (for example with the auto-configure

process; see below), or the installing person can make thesechanges by hand. With

binaries, a distinct file per specific computer configurationhas to be built and made ac-

cessible, or the program has to cope with it through programmed configuration routines.

• Licensing: The main non-technical reason for many open sourced programs is the li-

cense. Like many others, the IRC server code is distributed under the GNU Public

License (GPL) which necessitates that the distributor gives easy access to the source

code, even if the software is distributed as binary program file.

• Governance: Another important reason – conforming with the main hypothesis of this

work – is to give the installer29 options to change the working of the software, including

its governance characteristics.

Here I distinguish several means how the software can be changed: Choice of versions, source

code patches, source code configuration, and direct source code changes.

Choice of Versions

This is probably the easiest way to choose between sets of «code» rules. In the IRC, admins

have the choice to upgrade or not to upgrade to a new version, and in some cases to choose

between different series of software versions. The latter variant can be seen for example in the

EFnet, where at times the comstud (ircd+CSr), TH, and Hybridseries were available for the

admins to choose from. Also, many different IRC client programs are available to the users.

In the IRC, the choice of versions is an important instrumentto give the coders the incentive

to create admin-acceptable software. Mailing list messages suggest that admins have been

quite conservative with regard to version changes: once a server runs stable, there has to be a

good reason to replace it with an potentially instable one. In IRC history, there might have been

cases where the version changes have been enforced by makingthe new version incompatible

to the earlier version. Such severe limitation in choice would certainly have been preceded by

an extensive debate by all admins and coders.

The choice of versions or concurrent series of software is one means to choose between

different «code» rule sets. This choice of versions is not limited to source code versions of

«code», but generally available with any product, be it (closed or open source) software or

hardware.

29I will refer to the person who installs a software as "installer"; in the case of programs which will install
software, these will be referred to as "installer programs".

176

9.5 Customized Rules and Customization Processes

Source Code Patches

The previous choice of version is a very coarse one: One has tochoose a «code» rule set over

others, without the possibility to selectively choose specific rules or features. With patches,

coders can pack one or several features into one or more patchfiles which the installer can

choose to apply. This is a convenient and often used way not only to distribute features

changes, but also bug fixes. The patch files tend to be very small, so that they are sometimes

even distributed through mail messages.

Source code patches consist of sets of code lines, where additional embedded data specifies

which code lines are to be replaces with the new lines in a file.A special patch program

(in Unix systems appropriately named "patch") finds the old code lines, and upon a match,

replaces it with the new ones. Thus, an automatic source codechange is applied.

In the IRC (and undoubtedly in other applications as well), these patches are also used to

give the admin choices over «code» rule functionality.

This patching mechanism also exists for binary program files. The advantage of source

code patches compared to binary patches lie in their transparency: Since the patch is simply

a text file, it is easy to understand what the patch is doing. Incomparison it is usually not

possible to understand what a binary patch will change; evenreverse engineering does not

help, because the contents of the patch is taken out of context, which is even more necessary

for understanding the binary code than it is in source code.

Source Code Configuration

Once a version is chosen, and the appropriate source code patches applied, the software needs

to be configured. This includes the adaptation to the hardware and software of the computer

where the program is to be run, the network environment, as well as other information needed

to run the program.

The IRC server configuration comes in several flavors, depending on what the coders chose

to use. In the most simple case, it consists of editing one or more files, adding or changing

values at certain places according to the instruction givenby the coders which in the IRC

server distribution is explained in the file "INSTALL". In the case of the IRC server software,

this is usually the "include/config.h" file.

A more sophisticated means are configuration scripts. Theseare small script programs

which the admin runs; the script now requests all necessary information from the admin, and

makes the necessary adaptations to the source code. Afterwards, the software is ready to be

built into the binary program. These scripts can either be written by the coders themselves, or

use a prefabricated configuration tool, such as the GNU autoconf30. In irc2.8.21, for example,

the script "Config" has been written by one IRC coder (Darren Reed); recent versions in all

major networks have applied the GNU autoconf.

30See http://www.gnu.org/software/autoconf/.

177

9 Lex Informatica Revisited

However the configuration process is done, it is an importantstep for the admin to decide

upon the «code» rule regime that her server employs. In addition to the choice of the server

version or series, and the choice of patches, the configuration of the source code allows for a

fine-tuning of the various aspects of the code.

It is important to note that all these choices are facilitated by the coders. They have to

provide these configuration option for the installer, and has to make sure that the «code» does

work properly for all possible configuration settings.

Direct Source Code Changes

The ultimate power that an installer has with regard to the program is to change the source code

itself. For stand-alone application, this power is limitedonly by the programming ability of

the installer. In networked applications like the IRC though, the changes must be interoperable

with the other servers in the network.

9.5.1.2 System access

In difference to source code access «code» rule patterns, this and the following types presup-

pose a built binary program. In the case of open source programs, the installer has compiled

and linked the software. In the case of closed source software, this is the state in which the the

user acquires the program.

The ”system access” type differs from the next one (”interface access”, below section 9.5.1.3)

in that it mainly applies to the software before it is started.

The following categories can be subsumed under this type: versioning, patches, and binary

program configuration.

Versioning

Similar to its source code equivalent described above, coders can provide several versions of

the same software with different properties. In this case, the user can choose between them

and thereby chooses different «code» rule regimes.

Patches

Again similar to its source code equivalent. Binary patcheschange the program and thus the

implemented «code» rule regime. But in difference to sourcecode patches, it is difficult to

see what changes exactly are applied with the patch. A reverse engineering of the patch itself

will not get much information, if any. Only reverse engineering the patched binary could shed

some light on the changes. One has to rely on information accompanying the patches.

Configuration

In difference to source code configurations which affect theshape of the binary file, this kind

of configuration affects the program in its running state.

178

9.5 Customized Rules and Customization Processes

Configuration of a binary file come in two flavors: as a configuration file, or as startup op-

tions. In the IRC, both methods are used. With the configuration file, in IRC called "ircd.conf",

the main configurations of the IRC server are made in form of the configuration lines. Here,

a number of policies are determined, for example which groups of users may enter the IRC

through this server, which other servers may connect to it, what K-lines are applied, etc. For

an IRC admin, the main choices are made in this file.

With the IRC server it is possible to reread this configuration file through the IRC operator

/reread command or through the restart of the server (command/restart). Accordingly,

when the server is running, the admin can make changes to the configuration file, and activate

these changes through a reread.

This configuration file resembles the preferences file often seen in software which normally

is manipulated through an in-program preference pane or similar user interface. The differ-

ence becomes obvious in the IRC: the admin is different from the user or the IRC operator.

The above examined concept of the/kline command for example would not be possible

if IRCops or users generally had access to the configuration file. Therefore this allows for a

access separation between different roles in the setting.

The other mechanism for configuring a program is to provide startup options. This method

is applied when a program is started from the command line inside a terminal program. Nor-

mally, the options available here are a subset of the configuration file options. If a program is

started with these options, they will override the configuration file options.

9.5.1.3 Interface access

Software (as well as hardware) can provide interfaces as either necessary link to other com-

ponents of a system, or through which the functionality is expanded. Often functionality-

expanding interfaces are referred to as "plug-ins". In the case of IRC, there are two main

interfaces in the server, one to other servers in order to form the network (specified in the

server-server protocol), and the other to clients through which users connect to and use the

IRC (specified in the client-server protocol).

Another kind of interface in the IRC is the R-line feature in irc2.5.1.bu.09 (Nov 1990)31:

the acceptance of a new IRC user is made dependent on an external program to be provided

by the IRC admin. Into this program the admin can make any check she wants; the result (yes

or no) will be sent back to the IRC server, which then accordingly decides upon acceptance

of the user. Here the IRC server provides an interface to the external program, with a small

protocol (reply string: "Y" or "N").

With "R-lines", this interface can be interpreted as subsidiarity rule: The coder transmits the

right to form arbitrary criteria for new IRC members’ acceptance rules. Without this interface,

31See also above chapter 5.1.2.

179

9 Lex Informatica Revisited

admins could only use the other mechanisms (I-line, K-line)which are based on checking the

user/host resp. user/IP address pair.

System interfaces code rule changes types are a very powerful instrument in the relationship

between coders and users. As soon as the interface specification (protocols, application pro-

gramming interfaces) are made available, the software can be expanded in unforeseen ways.

See for example the case of bots (chapter 6.2) which give IRC users quite some power, just by

automating the client-server interface of the IRC.

This code rule change type also rises in importance with the tendency to modularize soft-

ware into components, making interfaces for communicationand interaction between these

components an integral part of a system. The more and complexthe interfaces, the larger the

opportunities to create components which use these interfaces in unforeseen ways.

9.5.1.4 User access

On the level of the usage, the available commands determine the available actions. But as the

examination of the IRC has shown, there are different ways toimplement a certain function-

ality.

The candidates for these code rule types are: hard coded, conditionally limited, functionally

limited, preset choices, settable.

Hard coded rules

This is certainly the strongest constraint that coders can implement: These rules are fixed in

the code, and there is no means for the users to change its behavior.

Examples include the numeric channel situation, with the channel visibility property32 hard

coded with specific channel number ranges, as well as the "maximum number of users" fixed

property33.

This «code» rule pattern also could be tagged "unconditionally activated", because there is

no mechanism which allows someone to choose over the activation of the rule. Instead, as

soon as the appropriate situation arises, the code automatically executed its rule.

Conditionally activated rules

In difference to the hard coded rules, this type of rules is activated according to conditions

which can be changed by some principals.

Examples include K-lines and ban lists. An IRC official adds K-lines into the server con-

figuration file, and subsequently these users cannot enter the IRC. A similar feature, the ban

lists, allow channel operators to set entry denials for channels.

The rule conditions can be coarse as in the case of early K-lines (only banned or not banned

32See chapter 4.3.1
33See above chapter 4.2.3

180

9.6 Primary Enforcement

as condition), or quite sophisticated (time-limited bans in later K-lines; R-line, D-line, E-line

as further instruments), depending on what the coders have implemented.

Functionally limited rules

In difference to aforementioned types, this type points to the action part of the rule. I am not

sure if this can be counted as a code rule type; but this type occurs quite often in a «code»

setting. In conditionally activated code rules, especially with commands, coders often limit

the action part functionally by allowing only a range of actions.

An example is the/kline command. Instead of giving the IRCop full access to the K-

lines in the server configuration file, only additions to it are allowed through the command.

Full access here is reserved to the IRC admin who has file system access to that file.

Preset Choices

Another technique next to functional limits is to give a preset list of choices from which the

user can choose a setting. These choices can either be exhaustive, or limited. The visibility

property and numeric channels are one example: users had to choose from the number range

of channels in order to get the channel with the desired property (public, secret, or hidden

channel). There was no means to change the property once the channel was chosen.

Another kind of preset choices would be one setting, from which these choices are available.

The visibility property in named channels is such a choice: the channel operator can choose

from three settings.

9.6 Primary Enforcement

Reidenberg compares the legal system’sex postenforcement to theex anteenforcement in

Lex Informatica, where rules implemented in the hard- and software are automated and self-

executed.

Auto-enforcement is not aninherentproperty of «code»; coders either implement an ex ante

enforcing rule in code, or choose to implement the equivalent of an ex post enforcement: The

breach of a substantive rule leads only to a warning, or collection of evidence which then can

be used to decide over appropriate sanctions.

This is a topic which is detailed in the following chapter 10 on rule types in «code».

Conclusion: «Code» as Regulation System

The ”Lex Informatica” model has served me to show that key aspects of regulation system, as

they are well-known in the legal system, are also present in the «code», the software as un-

derstood as regulation modality: Theframeworkconsists of the actual code. Thejurisdiction

181

9 Lex Informatica Revisited

is determined by its position in the network layer model, as well as (in the case of the IRC)

its status as an application; in addition, each IRC network forms its own jurisdiction inside

the IRC. The content, the actualrules, are also formed by the code, with norms guiding the

practices.

Thesourceof the rules were broadened by the decision to distribute thecode as open source

software, so that all participants of the IRC – from IRC adminto the simple user, in addition

to the coders – could contribute to the code. In addition, theopen interfaces have allowed for

further «code» rules. Finally,customized rulesandprimary enforcementare important topics

and thus detailed in the next chapter.

Judged from this discussion of key aspects, it is safe to claim that the notion of «code» as a

regulation system is indeed a useful one, as it provides a framework for the explanation of the

structures and developments as the have occurred in the IRC.

182

10 Rule Types in «Code»

In the summaries of the chapters in the main part of this work,I already have reviewed the

rules types as introduced in chapter 2.3.2. Here I will therefore try to make some conclusions

based on these summaries.

I have not found manysubstantive ruleswhich by itself determine rewardable or punishable

primary conduct. This may be due to the categories of social control of ”reward” and ”punish-

ment”. «Code» allows for the implementation of substantiverules which are not seen as such,

but instead as ”objective” constraints1. Those structures that I have labeled as ”constitutional”

structure or design might be interpreted as such ”objective” rules, such as the inability to name

channels (in the numbered channel design2).

But another interpretation is possible: The ”maximum usersper channel” case has shown

how a fixed constraint, the substantive rule of limiting membership in channels to ten individ-

uals, has been transformed into a per-channel configurationsetting, to be decided by a channel

operator. Coupled with the ability or any user to create new channel, and the abundance of

channels (but not names), the need to fix a substantive rule in«code» was not given. The tech-

nical abundance might reduce the need for fixed substantive rules in «code», instead offering

configurable environments with a set of controller-selecting and constitutive rules in place.

The development ofcontroller-selecting rulesis especially obvious: In the beginning formed

as three-level hierarchy—IRC admin, IRC operator, and user—, the IRC successively ex-

panded this hierarchy: channel operator and local operator; channel manager or founder

with the registration services, and their respective channel official hierarchy systems; and the

UWorld with its access system.

This was accompanied byconstitutive rules, to regulate the relationship between the con-

trollers, and check their powers. On the channel level, the ”voice” mode is an example, where

before one had to give chanop status to all speakers in a moderated channel and therefore

unchecked power over the entire channel; the voice mode now allowed to give only a ’voice’

when the channel was moderated3.

Another interesting example is the file interface, coupled with the limited /kline com-

mand, which gave of IRC operators the ability to add, but neither change nor remove (nor

1See Lemley (1998, p.677).
2See above chapter 4.2
3See above chapter 4.3.2.

183

10 Rule Types in «Code»

read) the K-lines in the configuration file4. And the logging facilities allowed the IRC admin

to control the use of the command5.

Logging, together with notices create some transparency and therefore are alsoprocedural

rules. Here again is a tendency towards expanding the amount of information available6 as

well as widening the audience, letting users receive notices formerly available only for IRC

operators.

On a more constitutional level, the ability for anyone to obtain the source code and study

might be also categorized asprocedural rule: The example of the UWorld as closed source

with its commands on the highest access level (nuking, and the mycmdcommand effectively

circumventing any built-in control mechanisms7) might be seen as a breach against the proce-

dural rule of the principal transparency of the technical components of the application. If so,

then the replacement of Uworld by a open source counterpart may be seen as remedy of this

breach.

Finally, the majority of commands presented in the chaptersare remedial rules: /kick

and bans on the channel level, their counterparts on server and network level (/kill , K-lines

etc.) and the commands made available by the service bots8: they all serve to apply sanctions

against other users. And again we can observe here a successive functional differentiation,

where more and more fine-grained tools are made available, indifferent contexts (network,

server, channel) as well as on different levels of the user hierarchy.

4See above chapter 5.3.
5See above chapter 7.3.2
6For example the number of notices sent by the IRC server; see above chapter 7.3.1.
7Above chapter 7.4.2.1,
8Above chapter 6.3.

184

11 Outlook

In the previous chapters I have shown how in the Internet Relay Chat (IRC), the participants

have employed «code», the underlying technology of the application, as main means to gov-

ern themselves. Specifically, I have interpreted the IRC source codeas a regulation system

by identifying code structures as ”rules” which shape the social situation, and changes in the

source code as adaptation of the governance situation to changing social contexts. In this

sense, the technology itself can be seen as regulation system, similar to but distinct from oth-

ers, such as the legal system; I have employed the term «code»governance for this theoretical

concept.

The goal of this work has been to explore the possible viability of this concept, for which I

have chosen the IRC as a self-governed Internet application. While this goal has been gener-

ally reached, further research is necessary to explore the viability of this model for other socio-

technical settings, as well as to work on its methodologicalapproaches. The next section 11.1

outlines some possible areas which appears to be suited to expand the «code» governance

concept.

Once this concept has shown its usefulness, I can see two immediate implications for the

academic study of socio-technical settings (section 11.2). For computer science itself, the

«code» governance model strongly suggests to systematically incorporate social structures

and dynamics into the design process, instead of relying on the requirement analysis and

software maintenance processes to cope with these issues. Additionally, my model could

prove instrumental in exchange research results in techno-social studies between computer

science and other concerned disciplines, giving the formera structured way to incorporate

economic, legal, and social science concepts into the technical domain, and at the same time

deepen the understanding of technology in law, economics and social and political science.

11.1 Validating and Refining the «Code» Governance

model

In this work I have shown that there are indeed structures andchanges in the IRC source

code which can be linked to the social situation and dynamicsof the IRC participants. From

this I have concluded that, in the case of the IRC, «code» governance serves as useful model

185

11 Outlook

to explain these code structures and changes as "regulationsystem", to treat the «code» as

"rules", and its creators as "regulators".

I have shown the usefulness of the «code» governance model here for exactly one example,

the IRC, which also has been carefully chosen for this exploration, exhibiting these properties:

«CODE» AND NORMS ONLY: The IRC excludes influences from the "law" and "market” reg-

ulation modalities, thus leaving «code» and social norms asprevalent modalities.

OPEN SOURCE SOFTWARE: The underlying software of the IRC is open sourced, so that it is

in principle available to all participants, for examination or contribution to its develop-

ment.

INTERNET APPLICATION: The IRC is positioned on the application layer in the Internet;

therefore all technical structures of the lower layers havebeen considered exogenous

in my examinations.

As my exploration is limited to one very specific Internet application setting, further work

has to be done in order to show a more general viability of the «code» governance model. It

should be challenged against other techno-social settings, to show its potential as well as its

limits. In the following subsections, I identify three areas which appear worthy challenge for

my model: social software, the domain name system, and digital rights management systems.

”Social Software”

The most obvious candidates for validating and refining the «code» governance model would

be settings which are similar to the Internet Relay Chat: Internet applications which serve as

a communication medium, allowing its participants to communicate and interact with each

other, and thus build social groups. Recently, the term ”social software” has been proposed

for this kind of applications1; it is described as ”software that supports group interaction”2.

Besides the IRC as one category, instant messaging and Internet forums, blogs and wikis up

to social networking software, peer-to-peer networks and multiplayer online games are seen

as examples of ”social software”.

Empirical analyses of such applications should give valuable insights in how the «code»

is designed to cope with the social setting, and how and to which extent the participants and

stakeholders are taking part in govern their setting through «code», thereby validating and

expanding the preliminary results found in this work. Specific attention should be given to the

interaction between the social realm and the «code», as these application might differ in their

social settings: For example, many online games or social networking sites have a corporate

1See for example ”Social Software”, Wikipedia, 2005-08-25 (http://en.wikipedia.org/wiki/Social_software).
2http://www.shirky.com/writings/group_enemy.html, according to ”Social software”, Wikipedia (2005-08-25).

186

11.1 Validating and Refining the «Code» Governance model

backing which could influence the ways how the «code» is used for governance issues, with

law and market regulation modalities influencing the setting besides «code» and social norms.

In this way, applications in the ”social software” categoryprovides a rich field for «code»

governance analyses, and help validating and refining this concept.

Domain Name System

The debate around the organization and administration of reserved identifiers in the Internet,

the domain name system (DNS) debate is another example wherethe «code» governance

concept should be applied to in order to prove its usefulness.

The DNS debate has developed into what is seen as the major governance issue in the

Internet, so that the the term ”Internet governance” has almost become a synonym for the DNS

debate, the question aboutwho should controlthe distribution and management of identifiers in

the Internet. The diversity of the stakeholders, the strongcorporate and governmental interests

involved, and and the current importance of the DNS for the applications in the Internet makes

it an interesting case to apply the «code» governance concept to. Additionally, as outlined

above in the comparison between the IRC and the DNS3, the current DNS systems shares

some technical similarities with the Internet Relay Chat, which could help applying results

found in this work to this much larger setting. In total, the disputes around the domain name

system form a formidable challenge to the «code» governanceconcept, promising valuable

insights into this hotly debated issue.

Digital Rights Management

Another important debate concerns the question of ”property” and ”control” in the digital

realm, usually labeled as ”intellectual property” or ”digital copyright” issues. Particularly

interesting in this field is the specific use of the technology. ”Digital rights management”

(DRM) systems are an example where content holders imprint their specific interests into the

technology, thereby trying to enforce what they hold their legitimate control over the dis-

tributed content. At the same time one encounters individual efforts to reshape these DRM

systems so that they serve their individual interests, or some larger ”public” interests. Finally,

governments strive to (re-)form the respective regulatoryregimes (primarily via law) as to

accommodate these different interests.

As these technologies are highly intertwined as part of the legal and societal complex set-

tings, where all regulation modalities—law, market, social norms, code—play an important

but varying part, the «code» governance approach could be used to clarify how design and im-

plementation choices of DRMs affect the various stakeholders, and what interests and choices

3Chapter 8.1.

187

11 Outlook

are coded into technology. Such results might lead to regulatory alternatives, for example by

alternative «code» design for DRMs, or inform policy considerations leading to a better reg-

ulation. At the same time, applying the «code» governance model to the DRM issue should

give insights into the power and limits of this model, and letit refine its methodological in-

struments.

11.2 Computer Science Implications from «Code»

Governance

Once a better understanding of the «code» governance model and its application to other

empirical settings has been developed, there are some implications for the discipline of com-

puter science. If this model proves useful for grasping the complexities of techno-social set-

tings, then computer science should develop approaches to treat social issues asendogenous

to software and systems design. Additionally, recent important techno-social research from

computer science scholars using their core competencies show that models such as «code»

governance promise valuable contributions from computer science towards better policies on

technology issues in society.

Recently, the U.S. National Science Foundation (NSF) launched a new program titled ”Sci-

ence of Design – Software-Intensive Systems”4, which addresses the ongoing struggle of soft-

ware engineering and computer science with the complex processes of reliable and systematic

system design. In an article in the Communications of the ACM5, the NSF authors claim that

”[c]omputer science and engineering needs an intellectually rigorous, analytical, teachable de-

sign process to ensure development of systems we all can livewith”6. They give examples for

questions to be addressed, such as:

• ”How might e-voting systems be designed [...] to protect civil rights and personal pri-

vacy while minimizing political bias and security threats?

• ”How might urban planning systems be designed to account forsocial and cultural di-

versity, public decision making, and accessibility?”7

The questions make clear that one of the predominant problemat hand is to cope with the

complexity of the dynamic interdependencies between the larger social and societal contexts

4See Science of Design program solicitation at http://www.nsf.gov/pubs/2004/nsf04552/nsf04552.htm (2005-
06-24).

5Freeman and Hart (2004).
6ibid.
7ibid., p.20.

188

11.2 Computer Science Implications from «Code» Governance

and the systems-to-be-designed. There is a need for techno-social models adapted to the

specifics of the system design. Strangely though, such a conclusion is not reflected by the

projects currently awarded under the NSF program8: almost none of them give considerations

to topics or theories outside the core computer science and software engineering realm9.

The results of this work back my conviction that computer science should systematically

incorporate the social context into the design process in order to to deal with the complexi-

ties of today’s systems. Any effort like the ”science of design” research therefore should be

concerned with the social and societal components of the systems on the level of the design

and implementation10. «code» governance constitutes one concept where the incorporation

of social contexts into the design and implementation processes to deal with socio-technical

complexities have been examined. This approach, if nothingelse, shows that computer sci-

ence and software engineering need to proactively deal withthe social contexts in their own

discipline, instead of solely relying on other disciplinesfor concepts and theories.

The inclusion of techno-social contexts into the core of thedesign and implementation pro-

cesses could open up another important venue for the computer science research at large.

Recently, we can observe contributions from computer science scholars which combine a

deep knowledge of the technical workings with models from important new multidisciplinary

research areas, such as the new institutionalism11, institutional economics12 or law & eco-

nomics13. Examples includes works on the impact of architectural principles of the Internet

such as the end-to-end on economic innovation14, and various contributions to the research on

the open source phenomenon15.

Their competitive advantage compared to the works from other disciplines lies in their

8The list of awards can be found via the NSF award search (http://www.nsf.gov/awardsearch/), keyword ”Sci-
ence of Design”. On 2005-09-04, the search returned the awards numbered 0438970, 0438153, 0438923,
0438866, 0438931, 0438948, 0439017, 0438786.

9The exception is the ”value-based science of design” (http://www.nsf.gov/awardsearch/showAward.do?
AwardNumber=0438931, 2005-09-04), based on a ”software economics” approach of the principal inves-
tigators which appears to incorporate some economics-based theories; see also Boehm et al. (2001).

10This is also suggested by the ”value sensitive design” research (Friedman et al. (2003)) which draws its an-
cestorship from the long tradition of ”computers and society” research, such as computer ethics, social in-
formatics, computer-supported cooperative work and participatory design (ibid, pp. 2-3). Their difference
to the «code governance» concept lies in their approach taken on the ”value” proposition: They treat the
so called ”values with ethical import” asexogenousto the design process, presenting a list of values with a
”distinct claim on resources in the design process”. Prima facie this appears to be a unnecessary limitation:
as «code governance» has shown, system participants find «code» solutions for social conflicts which itself
formulates unique value sets (see for example the IRC ”ownership” solutions in chapter 6). The «code gov-
ernance» opens up venues where such endogenous values couldbe detected and offered as valuable policy
debate inputs from the technical perspective.

11See for example Ostrom (1990).
12See for example Richter and Furubotn (1999).
13The seminal work in this area is Richard Posner, Economic analysis of law (1992, Boston: Little, Brown).
14van Schewick (2004)
15See for example Gehring and Lutterbeck (2004); Bärwolff et al. (2005), Gehring (2005).

189

11 Outlook

unique perspective of an intimate understanding of the technical workings and computer sci-

ence concepts. This leads to better analyses and alternative policy suggestions for techno-

social quandaries than solely pursued through legal, economic or political science scholarship.

The incorporation of a «code» governance understanding into the system design could further

help to foster such important computer science contributions to the ”internet governance”,

”information society” or other techno-social policy debates.

It is to hope, that the example set by those computer science scholarly works—and hopefully

by this thesis as well—will be more stringently pursued by the computer science discipline,

for better techno-social systems designs, and a deeper understanding of the complexities of

the information and communication technologies in society.

190

Part IV

Appendix

191

12 IRC Chronology

The analysis of the IRC «code» governance which I attempt here draws heavily on the changes

throughout the history of the IRC: I compare the different software versions over the time,

noting changes and interpret them as governance changes, linking them to events as found in

textual documents on the IRC. It is therefore necessary to sketch a short history of the IRC to

give a timeline of events and introduce the different IRC networks.

12.1 1989 – The Birth of the Internet Relay Chat

The beginning of the Internet Relay Chat bears interesting parallels with the probably best

known open source software project, Linux. Like Linux, the IRC has been initially conceived

and programmed by a Finnish student. And like Linux, the firstversions of IRC has been

distributed over the Internet (USENET News), with other people getting interested and starting

to use and change the software, in addition to interconnect the servers to form the first IRC

network. Today, like Linux, the IRC has grown to one of the major projects of its kind.

The IRC was created in the summer of 1988 by the Finnish student Jarkko Oikarinen. At

that time, the Internet was not the ubiquitous communication network that it is today. In the

corporate and academic world, networks like the Bitnet (IBM) and DECnet (Digital) existed

next to subscription-based like CompuServe; in addition, there were many private-run Bulletin

Board Systems, which were stand-alone servers to which users connected directly through

telephone lines. Most BBS’s were usually not continously connected to each other, but there

existed a technology called "store-and-forward" networks, where the server exchanged data by

calling each other at specified times of the day (mostly nights, to save phone charges); mainly

emails as well as Usenet news were transported through such networks.

Oikarinen had access to or knowledge of many such systems: onone hand a BBS called

"OuluBox" (which administered Oikarinen) which allowed real-time discussions (i.e, chats),

but did not feature a multi-group (or multi-channel) system. Usenet news, on the other hand,

is a multi-group system, but is not a real-time system. Otherexamples were a Unix application

called ”phone” (a real-time chat system between two users onUnix systems), other examples

the Bitnet chat system as well as the DECnet ”phone”.

In August 1988, Oikarinen created the Internet Relay Chat asa multi-group real-time dis-

193

12 IRC Chronology

cussion system running on Unix systems1 over the Internet:

2) Did you come up with IRC just because you were frustrated bythe limitations of talk, or were

there other reasons?

Kev

I believe that IRC came up because there was a clear need for it. It was not to replace talk.. the

purpose of talk is different. The original purpose of IRC wasmore like to provide similar features

that existed on BITNET and DECNET, ie. bitnet chat system andthe DECNET phone.

At first it ran as single-server system on a host at the University of Oulu where Oikarinen

was employed. But soon he found friends in other finnish universities (Tampere, Helsinki)

who installed IRC servers connecting to his server, and soonthe IRC became a multi-server

network with a number of Finnish servers. At one time, Oikarinen gave the software to some

people in the U.S., and after a while he got messages from people in U.S. universities who

successfully ran the IRC software. By interconnecting the Finnish and the U.S. network, the

original IRC network (later dubbedOnetfor "original" network) was born.

12.2 1989-1990 – Copyright, named channels and the

"great split"

After only one year (mid-1989) there were already about 40 servers in the O-net, but not many

users—in July 1990, per average only 12 users. But the code base was constantly fixed and

refined, going through more than 10 versions. In 1989, Michael Sandrof also created the first

independent IRC client version, ircII, which for a long timeremained the preferred IRC client

software of most users.

Copyright issues

The first important incident occurred with ircd version 2.3 (April 1990), where the distribut-

ing person changed the copyright notice without knowledge of the other developers (includ-

ing Jarkko Oikarinen) to an non-existing "IRC Development Consortium". As consequence,

Jarkko Oikarinen (the then copyright holder) released the next version 2.4 under the Gnu Pub-

lic License (GPL), under which all subsequent ircd versionsare released2.

Named channels

The summer of the same year 1990 saw two further developmentswhich are important espe-

cially under the «code» governance aspects examined in thiswork. First, with the server code

1At that time, the majority of the hosts in the Internet were running the Unix operating system.
2See also chapter 12.7

194

12.3 1990-1992 – Growth and Development

version 2.5 and 2.5+, a new kind of channel was introduced: the named channel. The de-

tails of this change were examined above3, but this change gave the normal user more power

in shaping the communication over the channels, and with it more responsibility, and more

conflicts.

The first "Great Split"

The second incident sheds some light on the IRC network management and policy conflicts. It

is based on a year long dispute over how open the network should be regarding the acceptance

of new IRC servers, which culminated in the first forking of anIRC network, called "the great

split"4. It resulted in two different IRC networks with different policies: The A-net (for An-

archy net) and the EFnet (for eris-free net, after the main server on A-net, eris.berkeley.edu).

Eventually though, the A-net vanished, while the EFnet remained and today still forms one of

the largest IRC networks.

12.3 1990-1992 – Growth and Development

EFnet continued to grow, both in the number of users and servers:

• 1991 already over a hundred servers are interconnected.

• 1991 gulf war brings live reports from the Iraq, boosting theusership first by the hun-

dreds, later in the thousands. In late 1994 around 5000, a year later 15000, in 1997

30000, and so on. Nowadays the largest network around 50000 to 100000 users per

network.

• The continuous growth poses challenges on system stabilityand feature sets. This re-

sults in constant code development efforts: In July 1991, irc2.6 version is released. The

end of the same year brings the irc2.7 version. March 1993 brings the irc2.8 version

with a large number of enhancements.

• In May 1993, the IRC client-server protocol (Oikarinen and Reed, 1993) is approved by

the Internet Engineering Task Force, and therefore made ’officially’ an Internet protocol

(Request for comments, RFC).

3Chapter 4.3.
4See above chapter 8.2.

195

12 IRC Chronology

12.4 1993 – The first successful fork: Undernet

The Undernet5 emerged from the joining of three separate groups of which two started as a

test network. In the U.S., Daniel Mitchell ("Wildthang") started a server in October 1992

where bots were tested. But apparently, friends also started to use it to chat with each other,

and soon other servers joined this "friends-of-friends network". Around the same time, french

server administrator Laurent Demailly ("_dl") and P. Ducrot ("dp") tested the new 2.8 server

with a small net. On the Canadian side, Donnie Lambert (”Whizzard”) had set up a server for

the EFnet, but got his link revoked. So, in December 1992 the Canadian server linked to the

french servers, and this Canadian-French net linked to the U.S. network. Thus the Undernet

was formed.

12.5 1994 – Another fork: DALnet

Another case is the creation of DALnet. This is the initiative of members of the channel

"#StarTrek" on EFnet, fans of the TV series "Star Trek". Similar to the creation of the Un-

dernet, the DALnet founders were annoyed with the lacking stability and user-friendliness of

the EFnet, and so some members formed a small network to whichothers connected to form

a new network. The main feature of this network are some services which introduced a kind

of nickname and channel ownership (NickServ, ChanServ6), as well as a service allowing to

leave messages for offline users (MemoServ).

The DALnet forked off the Undernet, and was named after its founder, a user named ”dal-

venjah”. Their main hallmarks are the ChanServ and NickServservices, next to many other

enhancements of the server code and the administrative environment.

There are two subsequent server series: First the ”dreamforge” series, later the ”Bahamut”

series which still remains in active server development. Recently, in 2003, DALnet suffered

a number of severe attacks which brought the whole DALnet down; their future at that time

remained unclear.

12.6 1996 – IRCnet forks off EFnet

Similar to the split between Anet and EFnet7, IRCnet resulted from another forking efforts. In

the case of the IRCnet, a dispute about the choice of a constitutional technology against net

splits lead to the split of the IRCnet from the EFnet. What is interesting here is that the split

went along ’cultural’ lines: Most of the U.S. server remained in the EFnet, while the large

5The following derived from Mirashi and Brown (2003).
6See above chapter 6.3.1.
7See above chapter 8.2

196

12.7 The IRC Source Code Copyright

majority of the European servers formed the IRCnet. In the split, IRCnet took the then newly

developed irc2.9 series with it, because the main maintainer (an Australian) decided to go with

IRCnet. EFnet continued then with the comstud, +TH and hybrid series.

12.7 The IRC Source Code Copyright

Like most software of the main Internet applications, the software underlying the IRC has

been open sourced from the beginning on, and the server software of the main IRC networks

has been kept under the GNU Public License (GPL) to this day. Here I will outline how the

IRC software came under the GPL, and what the main consequences for the development and

use of the software are.

In the beginning of the IRC, the creator Jarkko Oikarinen puta simple copyright into the

IRC software8. This named him and his employer, the Computing Center of theUniversity of

Oulu, Finland, as copyright holder. The copyright notice gave permission for free distribution

of the software, but limited the use to non-commercial purposes. Furthermore, the license

gave no permission for the modification and distribution of modified versions. This notice

remained until version irc2.2 of December 1989. Then an incident convinced Oikarinen to

change his mind about the copyright.

This incident happened with the version 2.3. The IRC software was actively developed

by a changing group of people, and the IRC software underwenta quick succession of main

versions and minor bug fixes and enhancements. Version irc2.2 was quickly followed by two

patches (irc2.2PL0, irc2.2PL1), but "had a tendency to die mysteriously very often"9. Thus

Markku Savela took over and released a number of enhancements named irc2.2msa.x (x being

a number). At some point another coder, Chelsea Ashley Dyerman contributed to the IRC

code. She and Savela began to work on the new version irc2.3, which would consolidate the

changes that Savela (and others) made to the IRC server source code.

On 6 April 1990 at 10:5010, Dyerman announced on the ”operlist” mailing list the release

of the irc2.3 version11. On the same day, at 19:27, Jarkko Oikarinen, the creator of the IRC,

sent a message12 on ”operlist” where he asks about some changes that obviously were made

by Dyerman. He noted that the copyright message in the sourcecode had been changed from

(c) 1988 University of Oulu, Computing Center

to

8[irc2.1.1/COPYRIGHT’]
9[irc2.4/2.4.notes]

10All times converted to Central European Time (CET).
11Dyerman, Chelsea Ashley (1990-04-06)irc 2.3. Mailing list IRClist (1990).
12Oikarinen, Jarkko (1990-04-06)New IRC version comments...Mailing list IRClist (1990).

197

12 IRC Chronology

@(#) * Copyright (c) 1990 IRC Development Consortium.\n\

All rights reserved.\n

As it became clear quite fast, no such organization existed.

In addition, some files were changed but there was no information in the header of the file

informing of the changes. Only ten minutes later, Oikarinenhad found another major change

in the code, one that enabled all IRC operators to see all secret and private channels:

I’m not sure (I’m not interested in trying the new irc right now), but does the new server include

things which affect irc privacy ?

Like operators being able to see secret/private channels ?

I think I’m going to quit using irc soon if that’s true.13

Other people, including Markku Savela, commented or asked about these changes, especially

the copyright changes. The answer followed promptly by Dyerman, who made these copyright

changes, in an apology to Oikarinen:

I can’t not even begin to say how much of a real creep I am. I was very wrong in removing the

headers, and installing the new. I will not try and hide behind excuses, and try and run from what

I have done. I would like to try and explain what the meaning that this whole mess of mine is, if

you will take this time to read on...14

She explained the change as a kind of joke, since so many contributed to the IRC code besides

Oikarinen. Also there was some kind of misunderstanding, confirmed by a message of Greg

Lindahl to Dyerman and forwarded by her to the operlist mailing list:

Please, Casie, don’t be so perturbed at the latest irc flap. I’m partially to blame for the copyright

affair; I am the person who contacted WiZ about it and only I have read his email reply.15

The problematic version irc2.3, released on April 6, 1990, was made non-readable on the next

day16. Server administrator continued to use the previous version 2.2, and Savela continued

with some more patches in the 2.2msa series.

This incident obviously convinced the copyright holder, Oikarinen, to change the copyright

to the GNU Public Licence (GPL). Version 2.4, coordinated byMarkku Savela and Chelsea

Ashley Dyerman, was the first IRC software version which was put under the GPL17. Since

this time, all major IRC software versions carry the GPL licence.
13Oikarinen, Jarkko (1990-04-06)Privacy.Mailing list IRClist (1990).
14Dyerman, Chelsea Ashley (1990-04-07)irc. Mailing list IRClist (1990).
15Forwarded message in Dyerman, Chelsea Ashley (1990-04-08)the latest irc flap (fwd). Mailing list IRClist

(1990).
16Oikarinen, Jarkko (1990-04-06)Re: irc. Mailing list IRClist (1990).
17As an interesting side note, Markku Savela, which gave important contributions to the IRC software, decided

to quit contributing to the IRC because of the GPL: He interpreted the GPL in that he could not use his
own code which he contributed to the IRC in other (commercial) projects anymore, and thus: "If the above
interpretation is true, I cannot modify or contribute to anyprogram that has GNU copyleft. I must have the
option to use my code as I wish, even if I allow others the rightto use it as they wish." (Savela, Markku
(1990-04-06)Release 2.4 hassles...IRClist (1990)). But as is so often the case with open source projects, his
place was taken over by other volunteer programmers.

198

13 Tools for the Examination of the

IRC Source Code

13.1 In Search of the Right Tool

At the time I realized that my hypothesis needed a in-depth exploration of the IRC source

code I already had read myself through much of the source codein a non-systematic way, and

with no other tools than what a regular Unix environment offered.1 Nevertheless I ventured

to search what kind of source code analysis tools existed, and how they could help me in this

specific kind of code examination.

To this behalf, I first initiated some searches in Google and the ACM website, and then

traced the resulting source code analysis tools, information about them, information which

could help me to find further pointers. I deemed this task finished when subsequent searches

only revealed the same tools and information without no new results.

Before I offer the results of this search though, I should specify what I deemed necessary

features of such a tool. My starting point were over 200 source code packages of IRC server

versions, each of them consisting of between 20 and 140 source code files (among a total of

between 50 and 480 files) for the IRC server. The server is written in the C programming

language, using BSD style libraries (e.g. sockets)2. What I needed was a tool which processed

these file to allow both examinations of one version (in orderto understand how the server, or

a specific feature is implemented) and the differences between two or more versions (in order

to understand how a specific feature evolves over the time).

Especially the latter functionality was important for me, since the tracking of changes in

functions helps to understand their «code» governance relevance. So I will mostly concentrate

here on the search of tools allowing me to compare and analysea version succession of C

source code.

As one final condition, I was restricted to find an either cost-free or reasonably priced solu-

tion. As we will see, this ruled out even the evaluation of some interesting sounding products,

1Which by the way is a quite powerful set of tools, even in the hands of an intermediate user such as myself.
2In early versions, there are file which provide an alternative Unix System V library dependency instead of

the BSD one, but these efforts ceased to exist early on. In a current version of the Undernet server code,
provisions for other operating system libraries (Linux, OpenBSD, Solaris) are made.

199

13 Tools for the Examination of the IRC Source Code

because I had no access to them.

Specifically, I have looked intoversion control systemsandcross referencing tools.

Version Control Systems

The first idea was to use one of the available version control systems. Such systems are used

in software projects to manage changes in files (source code and other files) where many de-

velopers may have writing access to. It automates tracking revisions of a file, allows to define

version points (a snapshot of the project were the state of all files is fixed) and branching

(allowing concurrent versions of one software), and provides tools to manage collisions (mul-

tiple developers changing one file at the same time). Of the many version control system in

existence3, I have checked ”CVS”, the control version system4.

A definitive plus of such systems are the ability to define branches. In the course of the IRC

server code development, there are all kinds of code branches:

• The changes of the ”bu”5 versions branched off irc2.5.1. But after the last bu version, the

new irc2.6 series was developed on basis of the irc2.5 series, and only selected changes

of the ”bu” branch were incorporated back into the irc2.6 code.

• Within the EFnet, at least two concurrently developed IRC server branches emerged

from one version (irc2.8.21) which continue to coexist. While the development is done

independently of each other, there are code parts which are adopted from the competing

branch and incorporated into their own code. Similar concurrent versions exist also in

the Undernet (where different code series coexist), and presumably in other networks as

well.

• Although the server software of different IRC networks are not interoperable, there

are many similarities resulting from a common code base (Undernet and IRCnet code

branched off EFnet versions; DALnet branched off Undernet,etc.) as well as adoption

and incorporation of code innovations into the own software, be it by recoding it, or

adapting existing code (verbatim code copying has been donerarely).

While the branching feature would have been helpful, the whole system is geared towards

the coordination of source code for actual development, instead of an after-the-facts analysis.

Based on constraints in time and knowledge, I found that CVS offered not enough support

for my needs, such as the preservation of time stamps when importing the packages (the IRC

server packages retain their time stamps, which is an important information of when the file

has been last changed). Moreover, CVS did not offer easy support for visualization of tracking

3See for example ”Revision control.” Wikipedia. 2005-04-04http://en.wikipedia.org/wiki/Revision_control.
4See http://www.cvs.org/
5”bu” stands for Boston University, students of which maintained these versions.

200

13.1 In Search of the Right Tool

differences; the addition of such a feature would have necessitated to create another layer on

top of the CVS, making the efforts to bring the code packages into CVS too cumbersome.

Cross Reference Tools

Cross reference tools take a number of source code files of onesoftware package and generate

documentation files in various formats allowing to browse through the code. Often seen fea-

tures include an index of functions, variables, definitionsand other code objects, and taking

specially formatted comments in the code to create an automated documentation.

Existing tools6 not only differ by the features they offer, but also by the number of program-

ming languages supported. The most common uses for such tools are auto-generated source

code documentation, information gathering for debugging processes, and to a certain extent

the exploration of the code structures of undocumented source code. Note that these tools do

not allow to compare software versions, but can only appliedto one version at a time.

The most promising tools appeared to be Doxygen7. At the time of writing in version

1.4.2 (28 Mar 2005), I had evaluated versions 1.2.5 (March 2001) and 1.3.8 (August 2004).

According to the manual, it is a ”documentation system for C++, C, Java, Objective-C, IDL

(Corba and Microsoft flavors) and to some extent PHP, C#, and D”, offering to ”generate an

on-line documentation browser (in HTML) and/or an off-linereference manual (in LATEX)”,

and configure it to ”extract the code structure from undocumented source files”. Most of

the features are geared towards documentation of actively developed source code, rather than

examining a given code package. But the documentation offers also support for such tasks by

creating ”dependency graphs, inheritance diagrams, and collaboration diagrams”.

The output generated by Doxygen is impressive. Once I had found out the proper configu-

ration settings, it generated a thorough documentation of the available source code, including

• a dependency graph for each file (which header files are included);

• for each define directive and function the definition, references to other objects, a list of

functions which reference this one, a call graph, and the source code listing;

• for each data structure its field list (and graphical representation), and for each field the

definition and a list of functions referencing this field.

Interestingly though, upon trying to use this comprehensive output, I found myself returning

to the ’low-tech’ variant of using the terminal and the Unix tools (vi editor, ctags, as well as

string search tools, such as ’find’ or ’grep’) to explore the source code. Both the speed as well

as flexibility of exploration of the code proved to be better served with the terminal than the

Doxygen output8.

6For a list of such tools, see for example http://www.doxygen.org/links.html (2005-04-05).
7http://www.doxygen.org/index.html. The following quotes are from this page as of 5 Apr 2005.
8The fact that I am a rather fast touch typist might have been animportant factor here as well.

201

13 Tools for the Examination of the IRC Source Code

In conclusion, cross reference tools such as Doxygen offer asophisticated way to examine

a source code package. But the quality of output is geared towards a static documentation,

rather than a dynamic exploration of the code. Therefore, such cross reference tools greatly

help to get an overview of a source code, which then can be usedto further explore the code

with more dynamic tools. For my «code» governance purposes though, the output did not

prove flexible enough to support me in ’wading’ through the source code, so that I basically

fell back to using basic tools, such as editor and Unix tools.

Other Tools

There are a number of other tools which aid developers to understand code structures, such

as code visualization tools9, or software slicing10. The IEEE Software Engineering Body of

Knowledge subsumes these tools under the category of ”Software maintenance tools”, sub-

category ”Comprehension tools”11. These tools are more geared towards helping in debug

and optimizing processes by offering views on the code wherethe complexity of the code is

reduced. Such tools appeared too large for my smaller needs (from the code complexity, the

IRC server code is only a small to medium sized project); in addition, these topics are in active

research, where available tools are often just a proof of concept, rather than generally usable

software.

13.2 A Makeshift Solution

As none of the available tools appeared to have a viable effort-result ratio, I settled on a

makeshift ’solution’, using available Unix tools for the process. An mix of small python, awk

and shell scripts with a small C program interspersed takes two directories (each containing

source code and other files of one software version) and generates some HTML files (and

intermediate text files as well).

At the core, the corresponding file in each of the two directory trees is matched and com-

pared. If there are differences, then a HTML file is generatedwhich shows a side-by-side

comparison of each line of the files (generated by the GNU ’diff’ program). In addition, a

overview file is generated in which for each file or file pair in the two directory trees, a status

is given (for a file pair: ’identical’ or ’differ’, for singlefiles: ’added’, ’removed’), together

with the (linked) position of the file.

As the file positions inside the directory tree has been changed throughout the versions (by

creating new subdirectories, or simply renaming them, for example), the scripts make some

9See for example http://www.cc.gatech.edu/classes/AY2001/cs7450_fall/Talks/18-softvis.ppt (2005-02-15) for
a good overview of existing tools and research.

10For a list of projects, see for example http://www.infosun.fmi.uni-passau.de/st/staff/krinke/slicing/node2.html
(2005-04-05); a list of papers offers http://hissa.ncsl.nist.gov/~jimmy/refs.html (2005-04-05).

11IEEE (2004, p.10-2)

202

13.3 The Analysis

attempts to locate the corresponding file. If no such file was found, the file is tagged either

’added’ or ’removed’. If there was still a corresponding file, then I have manually generated

and examined the changes.

13.3 The Analysis

Although the actual exploration was not a linear process as Idescribe it here, one can never-

theless distinguish some steps of analysis that I went through.

The first step is to identify «code» governance-relevant parts in the software. As the topics

in Part II show, there were plenty of alternatives from whichI could choose: functions and

commands surrounding channel issues, sanctioning mechanisms, ownership issues, checks

and balances, and network constitutional issues could be readily identified, and are important

governance topics even outside «code» related settings.

Once these functionalities were identified, I examined the actual implementation in more

or less arbitrarily chosen single server version. For example, by tracking the processing of

a command through the functions in the code, I identified not only the general working of

that command, but all details such as options, conditions onits use, notification and logging

facilities etc. When comparing to the command documentation (if available at all), more than

once it turned out to be incomplete, or even wrong. So the codeexamination proved the only

way to grasp the entire functionality of a command. This kindof source code exploration was

done without any tools other than an editor (vi), and the ’ctags’ functionality12.

The next step after understanding the functionality was to track changes throughout the

server versions. To this behalf, I generated the HTML files showing the file differences be-

tween versions for each adjacent version pair for all servercode versions that I had found

in the Internet. Now I could trace changes in the implementation through the versions in

the side-by-side comparisons for the appropriate files, looking for governance changes in the

code.

In sum, my exploration into the IRC server source code was quite ’low-tech’, by using

standard Unix tools and some make-shift scripts which created a HTML-ized file-by-file com-

parison of adjacent versions.

12The command ctags creates an index of code objects (such as functions, variables, directives etc.) which then
can be used by editors (such as vi) to quickly locate that object. For example, when in the course of the code
examination a function call occurs, one can issue a vi command in order to go to the function definition. This
greatly helps to understand the sequence of processing in the source code.

203

13 Tools for the Examination of the IRC Source Code

204

14 List of IRC server source code

packages

This is a list of all IRC server source code packages that I have collected and examined for my

work. They are put under the heading of the network for which they were developed.

14.1 Onet

All versions are available from ftp://ftp.irc.org/pub/pub/irc/server/Old/ (2005-04-27)V e r s i o n A r c h i v e f i l e n a m e R e l e a s e D a t ei r c 2 . 1 . 1 i r c 2 . 1 . 1 . t a r . Z 1 9 8 9 # 1 0 # 2 0i r c 2 . 2 P L 0 i r c 2 . 2 . t a r 1 9 8 9 # 1 2 # 1 7i r c 2 . 4 i r c 2 . 4 . t a r . Z 1 9 9 0 # 0 5 # 1 0i r c 2 . 4 + i r c 2 . 4 + . t a r . Z 1 9 9 0 # 0 5 # 2 2i r c 2 . 5 i r c 2 . 5 . t a r . Z 1 9 9 0 # 0 7 # 0 7i r c 2 . 5 + i r c 2 . 5 + . t a r . g z 1 9 9 0 # 0 7 # 0 9
Table 14.1: Onet server versions

14.2 EFnet

14.2.1 Standard

The standard version goes from irc2.5.1 through irc2.8.21.

All versions are available from ftp://ftp.irc.org/pub/pub/irc/server/Old/ (2005-04-27)

14.2.2 +CS

The main developer of this server code series was Chris Behrens (comstud).

Built on basis of irc2.8.21

205

14 List of IRC server source code packages

V e r s i o n A r c h i v e f i l e n a m e R e l e a s e D a t ei r c 2 . 5 . 1 i r c 2 . 5 . 1 . t g z 1 9 9 0 G 0 9 G 0 6i r c 2 . 5 . 1 b u 8 d i f f s . 2 . 5 . 1 G t o G b u . 0 8 1 9 9 0 G 1 0 G 2 2i r c 2 . 5 . 1 b u 9 a d i f f s . 2 . 5 . 1 . b u . 0 9 a G t o G b u . 1 0 1 9 9 0 G 1 1 G 1 2i r c 2 . 5 . 1 b u 1 0 i r c 2 . 5 . 1 . b u . 1 0 . t a r . Z 1 9 9 1 G 0 1 G 0 1
V e r s i o n A r c h i v e f i l e n a m e R e l e a s e D a t ei r c 2 . 6 p r e 1 9 i r c 2 . 6 p r e 1 9 . t a r . Z 1 9 9 1 g 0 3 g 0 8i r c 2 . 6 p r e 1 9 p a t c h e d i r c 2 . 6 p r e 1 9 . p a t c h e d . t a r . Z 1 9 9 1 g 0 3 g 0 9i r c 2 . 6 . 1 i r c 2 . 6 . 1 . t a r . Z 1 9 9 1 g 0 7 g 0 4i r c 2 . 6 . 2 i r c 2 . 6 . 2 . t a r . Z 1 9 9 1 g 0 9 g 0 2i r c 2 . 6 . 2 d i r c 2 . 6 . 2 d . t a r . Z 1 9 9 1 g 1 1 g 0 6i r c 2 . 6 . 2 f i r c 2 . 6 . 2 f . t a r . Z 1 9 9 2 g 1 1 g 2 1

Table 14.2: EFnet server versions 2.5 and 2.6

V e r s i o n A r c h i v e f i l e n a m e R e l e a s e D a t ei r c 2 . 7 . 1 i r c 2 . 7 . 1 . t a r . Z 1 9 9 2 � 0 1 � 1 4i r c 2 . 7 . 1 e i r c 2 . 7 . 1 e . t a r . Z 1 9 9 2 � 0 3 � 1 5i r c 2 . 7 . 1 e + 4 i r c 2 . 7 . 1 e + 4 . t a r . Z 1 9 9 2 � 0 4 � 0 8i r c 2 . 7 . 1 e + 1 0 i r c 2 . 7 . 1 e + 1 0 . t a r . Z 1 9 9 2 � 0 4 � 2 8i r c 2 . 7 . 2 i r c 2 . 7 . 2 . t a r . Z 1 9 9 2 � 0 5 � 1 4i r c 2 . 7 . 2 c i r c 2 . 7 . 2 c . t a r . Z 1 9 9 2 � 0 5 � 2 2i r c 2 . 7 . 2 e i r c 2 . 7 . 2 e . t a r . Z 1 9 9 2 � 0 6 � 0 3i r c 2 . 7 . 2 f i r c 2 . 7 . 2 f . t a r . Z 1 9 9 2 � 0 6 � 1 6i r c 2 . 7 . 2 g i r c 2 . 7 . 2 g . t a r . Z 1 9 9 2 � 0 8 � 1 1i r c 2 . 7 . 2 h i r c 2 . 7 . 2 h . t a r . Z 1 9 9 3 � 0 3 � 2 4i r c 2 . 7 . 2 i i r c 2 . 7 . 2 h � i . p a t c h 1 9 9 3 � 0 4 � 0 2

V e r s i o n A r c h i v e f i l e n a m e R e l e a s e D a t ei r c 2 . 8 i r c 2 . 8 . t a r . Z 1 9 9 3 © 0 3 © 2 8i r c 2 . 8 . 5 i r c 2 . 8 . 5 . t a r . Z 1 9 9 3 © 0 4 © 2 0i r c 2 . 8 . 6 i r c 2 . 8 . 6 . t a r . Z 1 9 9 3 © 0 4 © 3 0i r c 2 . 8 . 7 i r c 2 . 8 . 7 . t a r . Z 1 9 9 3 © 0 5 © 0 5i r c 2 . 8 . 9 i r c 2 . 8 . 9 . t a r . Z 1 9 9 3 © 0 5 © 2 6i r c 2 . 8 . 1 0 i r c 2 . 8 . 1 0 . t a r . g z 1 9 9 3 © 0 6 © 2 6i r c 2 . 8 . 1 2 i r c 2 . 8 . 1 2 . t a r . g z 1 9 9 3 © 0 7 © 0 8i r c 2 . 8 . 1 4 i r c 2 . 8 . 1 4 . t a r . g z 1 9 9 3 © 0 9 © 1 4i r c 2 . 8 . 1 5 i r c 2 . 8 . 1 5 . t a r . Z 1 9 9 3 © 1 0 © 1 7i r c 2 . 8 . 1 6 i r c 2 . 8 . 1 6 . t a r . g z 1 9 9 3 © 1 1 © 0 9i r c 2 . 8 . 2 0 i r c 2 . 8 . 2 0 . t a r . Z 1 9 9 4 © 0 6 © 1 0i r c 2 . 8 . 2 1 i r c 2 . 8 . 2 1 . t a r . g z 1 9 9 4 © 1 2 © 0 3
Table 14.3: EFnet server versions 2.7 and 2.8

206

14.3 Undernet

All versions are available from http://ftp.carnet.hr/pub/misc/irc/ircd/CSr/ (2005-04-27)V e r s i o n A r c h i v e f i l e n a m e R e l e a s e D a t ei r c 2 . 8 . 2 1 + C S r 1 6 2 1 + C S r 1 5 Ì r 1 6 . p a t c h 1 9 9 5 Ì 1 2 Ì 0 9i r c 2 . 8 . 2 1 + C S r 1 7 2 1 + C S r 1 6 Ì r 1 7 . p a t c h 1 9 9 5 Ì 1 2 Ì 0 2i r c 2 . 8 . 2 1 + C S r 1 8 2 1 + C S r 1 7 Ì r 1 8 . p a t c h 1 9 9 6 Ì 0 1 Ì 0 4i r c 2 . 8 . 2 1 + C S r 1 9 2 1 + C S r 1 8 Ì r 1 9 . p a t c h 1 9 9 6 Ì 0 1 Ì 0 5i r c 2 . 8 . 2 1 + C S r 2 0 i r c 2 . 8 . 2 1 + C S r 2 0 . t a r . g z 1 9 9 6 Ì 0 1 Ì 0 1i r c 2 . 8 . 2 1 + C S r 2 1 2 1 + C S r 2 0 Ì r 2 1 . p a t c h 1 9 9 6 Ì 0 4 Ì 0 4i r c 2 . 8 . 2 1 + C S r 2 2 2 1 + C S r 2 1 Ì r 2 2 . p a t c h 1 9 9 6 Ì 0 4 Ì 0 7i r c 2 . 8 . 2 1 + C S r 2 3 2 1 + C S r 2 2 Ì r 2 3 . p a t c h 1 9 9 6 Ì 0 5 Ì 0 9i r c 2 . 8 . 2 1 + C S r 2 4 i r c 2 . 8 . 2 1 + C S r 2 4 . t a r . g z 1 9 9 6 Ì 0 7 Ì 0 5i r c 2 . 8 . 2 1 + C S r 2 5 i r c 2 . 8 . 2 1 + C S r 2 5 . t a r . g z 1 9 9 6 Ì 0 9 Ì 0 5i r c 2 . 8 . 2 1 + C S r 2 7 i r c 2 . 8 . 2 1 + C S r 2 7 . t a r . g z 1 9 9 6 Ì 1 1 Ì 0 2i r c 2 . 8 . 2 1 + C S r 2 8 i r c 2 . 8 . 2 1 + C S r 2 8 . t a r . g z 1 9 9 7 Ì 0 3 Ì 0 6i r c 2 . 8 . 2 1 + C S r 2 9 i r c 2 . 8 . 2 1 + C S r 2 9 . t a r . g z 1 9 9 7 Ì 0 3 Ì 0 8i r c 2 . 8 . 2 1 + C S r 3 0 i r c 2 . 8 . 2 1 + C S r 3 0 . t a r . g z 1 9 9 7 Ì 0 7 Ì 0 3i r c 2 . 8 . 2 1 + C S r 3 0 . 5 i r c 2 . 8 . 2 1 + C S r 3 0 . 5 . t a r . g z 1 9 9 7 Ì 0 7 Ì 0 4i r c 2 . 8 . 2 1 + C S r 3 1 p l 2 i r c 2 . 8 . 2 1 + C S r 3 1 p l 2 . t a r . g z 1 9 9 8 Ì 0 9 Ì 0 5i r c 2 . 8 . 2 1 + C S r 3 1 p l 4 i r c 2 . 8 . 2 1 + C S r 3 1 p l 4 . t a r . g z 2 0 0 0 Ì 0 5 Ì 0 7
Table 14.4: EFnet +CS (comstud) versions

.

14.2.3 +th and Hybrid

+TH: Developed by Taner Halicioglu. The TH series builds on the 2.8. series, but it is unclear

on which specific version, but irc2.8.21 seems a viable candidate. the +th series is the

basis of the Hybrid series.

All versions are available from http://ftp.carnet.hr/pub/misc/irc/ircd/th/ (2005-04-27)

HYBRID : The EFnet hybrid server series takes the ircd2.8/th.v5a.3and adds "WHO, WHOWAS,

and IsMember() code from Comstud’s irc2.8.21CSr29." ([ircd-hybrid-2/README.hybrid]).

The main source of the code was: ftp://ftp.blackened.com/pub/irc/hybrid/old/ (2000-03-

22). with newer files also in ftp://ftp.ircdhelp.org/pub/unix/ircd/ (2003-01-13).

All files are available from http://ftp.carnet.hr/pub/misc/irc/ircd/hybrid/ (2005-04-27)

14.3 Undernet

2.8 VERSIONS: The Undernet 2.8 versions all derived from their EFnet counterparts. As soon

as the EFnet released a new versions, the changes were included and released as ”mu”

207

14 List of IRC server source code packages

V e r s i o n A r c h i v e f i l e n a m e R e l e a s e D a t e+ t h è 5 a . 0 i r c d + t h è 5 a . 0 . t a r . g z 1 9 9 6 è 1 1 è 1 5+ t h è 5 a . 1 i r c d + t h è 5 a . 1 . t a r . g z 1 9 9 6 è 1 1 è 2 2+ t h è 5 a . 3 a i r c d + t h è 5 a . 3 a . t a r . g z 1 9 9 7 è 0 2 è 2 8+ t h è 6 a i r c d + t h è 6 a . t a r . g z 1 9 9 7 è 0 7 è 2 2

V e r s i o n A r c h i v e F i l e n a m e R e l e a s e D a t eh y b r i d � 2 i r c d � h y b r i d � 2 . t a r . g z 1 9 9 7 � 0 4 � 0 2h y b r i d � 3 i r c d � h y b r i d � 3 . t a r . g z 1 9 9 7 � 0 6 � 0 7h y b r i d � 4 i r c d � h y b r i d � 4 . t a r . g z 1 9 9 7 � 0 7 � 0 1h y b r i d � 4 . 1 i r c d � h y b r i d � 4 . 1 . t a r . g z 1 9 9 7 � 0 8 � 0 4h y b r i d � 4 . 2 i r c d � h y b r i d � 4 . 2 . t a r . g z 1 9 9 7 � 0 8 � 0 4h y b r i d � 4 . 3 i r c d � h y b r i d � 4 . 3 . t a r . g z 1 9 9 7 � 0 8 � 0 9h y b r i d � 5 i r c d � h y b r i d � 5 . t a r . g z 1 9 9 7 � 0 9 � 0 6h y b r i d � 5 . 1 b 5 i r c d � h y b r i d � 5 . 1 b 5 . t a r . g z 1 9 9 7 � 1 0 � 0 8h y b r i d � 5 . 2 i r c d � h y b r i d � 5 . 2 . t a r . g z 1 9 9 8 � 0 4 � 0 4h y b r i d � 5 . 2 p 1 i r c d � h y b r i d � 5 . 2 p 1 . t a r . g z 1 9 9 8 � 0 5 � 0 3h y b r i d � 5 . 3 i r c d � h y b r i d � 5 . 3 . t a r . g z 1 9 9 8 � 0 6 � 0 3h y b r i d � 5 . 3 p 2 i r c d � h y b r i d � 5 . 3 p 2 . t a r . g z 1 9 9 8 � 0 9 � 0 9h y b r i d � 5 . 3 p 3 i r c d � h y b r i d � 5 . 3 p 3 . t a r . g z 1 9 9 8 � 1 1 � 0 3h y b r i d � 5 . 3 p 4 i r c d � h y b r i d � 5 . 3 p 4 . t a r . g z 1 9 9 8 � 1 1 � 0 5h y b r i d � 5 . 3 p 6 i r c d � h y b r i d � 5 . 3 p 6 . t a r . g z 1 9 9 8 � 1 2 � 0 4h y b r i d � 5 . 3 p 7 i r c d � h y b r i d � 5 . 3 p 7 . t a r . g z 1 9 9 9 � 0 6 � 0 2i r c d � h y b r i d � 6 . 0 i r c d � h y b r i d � 6 . 0 . t g z 2 0 0 1 � 0 1 � 0 4i r c d � h y b r i d � 6 . 3 i r c d � h y b r i d � 6 . 3 . t g z 2 0 0 2 � 0 2 � 0 7i r c d � h y b r i d � 6 . 3 . 1 i r c d � h y b r i d � 6 . 3 . 1 . t g z 2 0 0 2 � 0 4 � 0 8
Table 14.5: EFnet server versions +th and HybridUndernet server versions u2.9 and u2.10

and ”U” versions. ”mu” and ”U” differ slightly in their code.

All versions are available from http://ftp.undernet.org/index.php?dir=/servers/old-versions

(2005-04-27)V e r s i o n A r c h i v e f i l e n a m e R e l e a s e D a t ei r c d 2 . 8 . 1 4 . m u i r c d 2 . 8 . 1 4 . m u . t a r . Z 1 9 9 3 6 1 0 6 0 5i r c 2 . 8 . 1 6 . U 2 i r c 2 . 8 . 1 6 . U 2 . t a r . g z 1 9 9 4 6 0 2 6 0 8i r c 2 . 8 . 1 6 . m u i r c 2 . 8 . 1 6 . m u . t a r . g z 1 9 9 4 6 0 3 6 0 4i r c 2 . 8 . 1 9 . U 3 . 2 i r c 2 . 8 . 1 9 . U 3 . 2 . t a r . g z 1 9 9 4 6 0 5 6 0 5i r c 2 . 8 . 1 9 . m u 1 i r c 2 . 8 . 1 9 . m u 1 . t a r . g z 1 9 9 4 6 0 6 6 0 0i r c 2 . 8 . 2 0 . U 4 i r c 2 . 8 . 2 0 . U 4 . t a r . g z 1 9 9 4 6 0 6 6 0 5i r c 2 . 8 . 2 0 . m u 2 i r c 2 . 8 . 2 0 . m u 2 . t a r . g z 1 9 9 4 6 0 6 6 0 6i r c 2 . 8 . 2 0 . m u 3 i r c 2 . 8 . 2 0 . m u 3 . t g z 1 9 9 4 6 1 1 6 0 6i r c 2 . 8 . 2 1 . m u 3 . 1 i r c 2 . 8 . 2 0 . m u 3 6 2 1 . m u 3 . 1 . p a t c h . g z 1 9 9 5 6 0 1 6 0 3
Table 14.6: Undernet server versions 2.8

208

14.4 IRCnet

U2.9/U2.10 VERSIONS: Beginning with u2.9, the code was developed independentlyof the

EFnet versions.

All files but u2.10.11 are available from http://ftp.carnet.hr/pub/misc/irc/ircd/ircu/ (2005-

04-27). u2.10.11 is available from http://stargate.ukscifi.net/servers/ircnet/ (2005-04-

27).

V e r s i o n A r c h i v e f i l e n a m e R e l e a s e D a t ei r c u 2 . 9 . 1 3 . m u i r c u 2 . 9 . 1 3 . m u . t g z 1 9 9 4 Y 1 1 Y 0 1i r c u 2 . 9 . 1 3 i r c u 2 . 9 . 1 3 . t g z 1 9 9 4 Y 1 1 Y 0 1i r c u 2 . 9 . 1 9 i r c u 2 . 9 . 1 9 . t g z 1 9 9 5 Y 0 3 Y 0 8i r c u 2 . 9 . 1 9 . m u i r c u 2 . 9 . 1 9 . m u . t g z 1 9 9 5 Y 0 3 Y 0 8i r c u 2 . 9 . 2 0 i r c u 2 . 9 . 2 0 . t g z 1 9 9 5 Y 0 4 Y 0 5i r c u 2 . 9 . 2 0 . m u i r c u 2 . 9 . 2 0 . m u . t g z 1 9 9 5 Y 0 4 Y 0 5i r c 2 . 8 . 2 1 . m u 3 . 2 i r c 2 . 8 . 2 1 . m u 3 . 2 . t g z 1 9 9 5 Y 0 5 Y 0 3i r c u 2 . 9 . 2 1 . m u i r c u 2 . 9 . 2 1 . m u . t g z 1 9 9 5 Y 0 5 Y 0 6i r c u 2 . 9 . 2 2 i r c u 2 . 9 . 2 2 . t a r . g z 1 9 9 5 Y 0 8 Y 0 0i r c u 2 . 9 . 2 1 . 2 i r c u 2 . 9 . 2 1 . 2 . m u . t g z 1 9 9 5 Y 0 9 Y 0 7i r c u 2 . 9 . 3 0 i r c u 2 . 9 . 3 0 . t g z 1 9 9 6 Y 0 3 Y 0 5i r c u 2 . 9 . 3 1 i r c u 2 . 9 . 3 1 . t g z 1 9 9 6 Y 0 6 Y 0 8i r c u 2 . 9 . 3 2 i r c u 2 . 9 . 3 2 . t g z 1 9 9 6 Y 0 8 Y 0 0

V e r s i o n A r c h i v e f i l e n a m e R e l e a s e D a t ei r c u 2 . 1 0 . 0 0 i r c u 2 . 1 0 . 0 0 . t g z 1 9 9 7 z 0 7 z 0 3i r c u 2 . 1 0 . 0 2 i r c u 2 . 1 0 . 0 2 . t g z 1 9 9 8 z 0 3 z 0 5i r c u 2 . 1 0 . 0 3 i r c u 2 . 1 0 . 0 3 . t g z 1 9 9 8 z 0 4 z 0 8i r c u 2 . 1 0 . 0 4 i r c u 2 . 1 0 . 0 4 . t g z 1 9 9 8 z 0 5 z 0 1i r c u 2 . 1 0 . 0 5 . 9 i r c u 2 . 1 0 . 0 5 . 9 . t g z 1 9 9 9 z 0 2 z 0 1i r c u 2 . 1 0 . 0 7 i r c u 2 . 1 0 . 0 7 . t a r . g z 1 9 9 9 z 1 1 z 0 6i r c u 2 . 1 0 . 0 7 . p l 6 i r c u 2 . 1 0 . 0 7 . p l 6 . t g z 2 0 0 0 z 0 1 z 0 0i r c u 2 . 1 0 . 0 7 . 1 1 i r c u 2 . 1 0 . 0 7 . 1 1 . t g z 2 0 0 0 z 0 3 z 0 8i r c u 2 . 1 0 . 0 8 . 0 1 i r c u 2 . 1 0 . 0 8 . 0 1 . t a r . g z 2 0 0 0 z 0 5 z 0 7i r c u 2 . 1 0 . 0 8 . 0 2 i r c u 2 . 1 0 . 0 8 . 0 2 . t a r . g z 2 0 0 0 z 0 5 z 0 8i r c u 2 . 1 0 . 0 8 . 0 3 i r c u 2 . 1 0 . 0 8 . 0 3 . t a r . g z 2 0 0 0 z 0 5 z 0 9i r c u 2 . 1 0 . 1 0 . p l 5 i r c u 2 . 1 0 . 1 0 . p l 5 . t g z 2 0 0 0 z 0 4 z 0 1i r c u 2 . 1 0 . 1 0 . p l 6 i r c u 2 . 1 0 . 1 0 . p l 6 . t g z 2 0 0 0 z 0 4 z 0 1i r c u 2 . 1 0 . 1 0 i r c u 2 . 1 0 . 1 0 . t g z 2 0 0 0 z 0 4 z 0 4i r c u 2 . 1 0 . 1 0 p l 2 0 i r c u 2 . 1 0 . 1 0 p l 2 0 . t g z 2 0 0 2 z 0 3 z 0 8i r c u 2 . 1 0 . 1 1 i r c u 2 . 1 0 . 1 1 . t g z 2 0 0 2 z 0 5 z 0 5
Table 14.7: Undernet server versions u2.9 and u2.10

14.4 IRCnet

2.9 VERSIONS: Technically, the versions 2.9 to 2.9.2 were developed while IRCnet was still

part of the EFnet. But since the main developer of the 2.9 series left EFnet to continue

to maintain the irc2.9 version, these first 2.9 versions are included here as well.

All versions are available from ftp://ftp.irc.org/pub/pub/irc/server/Old/ (2005-04-27)

2.10 VERSIONS: All versions are available from ftp://ftp.irc.org/pub/pub/irc/server/ (2005-

04-27)

209

14 List of IRC server source code packages

V e r s i o n A r c h i v e f i l e n a m e R e l e a s e D a t ei r c u 2 . 1 0 . 0 0 i r c u 2 . 1 0 . 0 0 . t g z 1 9 9 7 � 0 7 � 0 3i r c u 2 . 1 0 . 0 2 i r c u 2 . 1 0 . 0 2 . t g z 1 9 9 8 � 0 3 � 0 5i r c u 2 . 1 0 . 0 3 i r c u 2 . 1 0 . 0 3 . t g z 1 9 9 8 � 0 4 � 0 8i r c u 2 . 1 0 . 0 4 i r c u 2 . 1 0 . 0 4 . t g z 1 9 9 8 � 0 5 � 0 1i r c u 2 . 1 0 . 0 5 . 9 i r c u 2 . 1 0 . 0 5 . 9 . t g z 1 9 9 9 � 0 2 � 0 1i r c u 2 . 1 0 . 0 7 i r c u 2 . 1 0 . 0 7 . t a r . g z 1 9 9 9 � 1 1 � 0 6i r c u 2 . 1 0 . 0 7 . p l 6 i r c u 2 . 1 0 . 0 7 . p l 6 . t g z 2 0 0 0 � 0 1 � 0 0i r c u 2 . 1 0 . 0 7 . 1 1 i r c u 2 . 1 0 . 0 7 . 1 1 . t g z 2 0 0 0 � 0 3 � 0 8i r c u 2 . 1 0 . 0 8 . 0 1 i r c u 2 . 1 0 . 0 8 . 0 1 . t a r . g z 2 0 0 0 � 0 5 � 0 7i r c u 2 . 1 0 . 0 8 . 0 2 i r c u 2 . 1 0 . 0 8 . 0 2 . t a r . g z 2 0 0 0 � 0 5 � 0 8i r c u 2 . 1 0 . 0 8 . 0 3 i r c u 2 . 1 0 . 0 8 . 0 3 . t a r . g z 2 0 0 0 � 0 5 � 0 9i r c u 2 . 1 0 . 1 0 . p l 5 i r c u 2 . 1 0 . 1 0 . p l 5 . t g z 2 0 0 0 � 0 4 � 0 1i r c u 2 . 1 0 . 1 0 . p l 6 i r c u 2 . 1 0 . 1 0 . p l 6 . t g z 2 0 0 0 � 0 4 � 0 1i r c u 2 . 1 0 . 1 0 i r c u 2 . 1 0 . 1 0 . t g z 2 0 0 0 � 0 4 � 0 4i r c u 2 . 1 0 . 1 0 p l 2 0 i r c u 2 . 1 0 . 1 0 p l 2 0 . t g z 2 0 0 2 � 0 3 � 0 8i r c u 2 . 1 0 . 1 1 i r c u 2 . 1 0 . 1 1 . t g z 2 0 0 2 � 0 5 � 0 5
V e r s i o n A r c h i v e f i l e n a m e R e l e a s e D a t ei r c 2 . 1 0 . 0 i r c 2 . 1 0 . 0 . t g z 1 9 9 8 ½ 0 9 ½ 0 7i r c 2 . 1 0 . 0 p 1 i r c 2 . 1 0 . 0 p 1 . t g z 1 9 9 8 ½ 0 9 ½ 0 7i r c 2 . 1 0 . 0 p 3 i r c 2 . 1 0 . 0 p 3 . t g z 1 9 9 8 ½ 1 0 ½ 0 9i r c 2 . 1 0 . 0 p 4 i r c 2 . 1 0 . 0 p 4 . t g z 1 9 9 8 ½ 1 0 ½ 0 1i r c 2 . 1 0 . 0 p 5 i r c 2 . 1 0 . 0 p 5 . t g z 1 9 9 8 ½ 1 0 ½ 0 8i r c 2 . 1 0 . 1 i r c 2 . 1 0 . 1 . t g z 1 9 9 8 ½ 1 1 ½ 0 2i r c 2 . 1 0 . 2 i r c 2 . 1 0 . 2 . t a r . g z 1 9 9 9 ½ 0 1 ½ 0 9i r c 2 . 1 0 . 3 i r c 2 . 1 0 . 3 . t a r . g z 1 9 9 9 ½ 0 8 ½ 0 3

Table 14.8: EFnet server versions 2.7 and 2.8

210

Bibliography

Bärwolff, M., Gehring, R., and Lutterbeck, B. (2005).Open Source Jahrbuch 2005. Lehmanns

Media.

Bell, T. W. (2000). Pornography, Privacy, and Digital Self-Help. Public Law and Legal Theory

Working Paper 17, University of San Diego, School of Law.

Benkler, Y. (2000). From Consumers to Users: Shifting the Deeper Structures of Regulation

Toward Sustainable Commons and User Access.Federal Communications Law Journal,

52(3):561–579.

Bitnet-Relay (1986). Bitnet Relay User Guide. Corrective Actions – Relay Operator Respon-

sibilities 8/21/86, http://web.inter.nl.net/users/fred/relay/reluse.html, 2004-12-16.

Boehm, B., Port, D., and Sullivan, K. (2001). Value Based Software En-

gineering, http://www.nitrd.gov/subcommittee/sdp/vanderbilt/position_papers/

barry_boehm_value_based_software.pdf, 2005-09-04.

Brinton, A. (1997). IRC Operators Guide, http://efnet.org/docs/opersguide, 2002-12-22.

Brown, S. (2003). history.txt [Undernet history, 1993-2003], http://pfft.net/stacy/history.txt,

2003-02-26.

Commission-on Global-Governance, . (1995).Our Global Neighborhood. United Nations

Commission On Global Governance.

DALnet (2003). So you think you want to be a DALnet IRC OPerator,

http://help.dal.net/dnh/oper.php, 2003-06-13.

Ellickson, R. C. (1991).Order without Law. How Neighbors Settle Disputes. Cambridge

(MA), London (UK): Harvard University Press.

Freeman, P. and Hart, D. (2004). A Science of Design for Software-Intensive Systems.Com-

munications of the ACM, 47(8):19–21.

211

Bibliography

Frey, B. S. and Eichenberger, R. (2000). A Proposal for a Flexible Europe. Technical report,

Institute for Empirical Research in Economics, Universityof Zurich.

Friedman, B., Kahn, P. H., and Borning, A. (2003). Value Sensitive Design: Theory and

Methods, http://www.ischool.washington.edu/vsd/vsd-theory-methods-draft-june2003.pdf,

2003-06-11.

Frischmann, B. M. (2003). The Prospect of Reconciling Internet and Cyberspace.Loyola

University Chicago Law Journal, 35:205–234.

Froomkin, M. (2000). Wrong Turn in Cyberspace: Using ICANN to Route Around the APA

and the Constitution, http://personal.law.miami.edu/ froomkin/articles/icann.pdf, 2002-01-

19.

Gehring, R. (2005). The Institutionalization of Open Source. (to appear in: Poiesis und

Praxis).

Gehring, R. and Lutterbeck, B. (2004).Open Source Jahrbuch 2004. Lehmanns Media.

Gilmore, J. (1991). Privacy, Technology, and the Open Society,

http://www.toad.com/gnu/cfp.talk.txt, 2005-04-19.

Goldsmith, J. (1998). Regulation of the Internet: Three Persistent Fallacies.Chicago Kent

Law Review, 73(4):1119–1131.

Grewlich, K. W. (1999). Conflict and good Governance in "Cyberspace", http://www.mpp-

rdg.mpg.de/pdf_dat/grewlich.pdf, 2001-11-26.

Hadfield, G. K. (2000). Priviatizing Commercial Law: Lessons from the Middle and the

Digital Ages, http://ssrn.com/abstract=220252, 2000-05-10.

Hardy, T. (1994). The Proper Legal Regime for "Cyberspace".University of Pittsburgh Law

Review, 55:933–1055.

IEEE (2004). SWEBOK - Guide to the Software Engineering Bodyof Knowledge,

http://www.swebok.org/ironman/pdf/Swebok_Ironman_June_23_%202004.pdf, 2004-07-

15.

irc faq (1995). IRC Frequently Asked Questions, Version 1.53, http://ftp.irc.org/irc/docs/FAQ,

2002-08-22.

IRClist (1990). Irclist-operlist mailing list April 1990-May 1990 (discussion about irc-

2.3), ftp://metalab.unc.edu/pub/academic/communications/papers/irc/lists/irc-2.3.Z, 2000-

03-24.

212

Bibliography

IRClist (1991). Irclist-operlist mailing list March 1990-November 1991,

ftp://metalab.unc.edu/pub/academic/communications/papers/irc/lists/irclist-operlist.Z,

2000-03-24.

Johnson, D. R. and Post, D. G. (1996a). And How Shall the Net BeGoverned? A Meditation

on the Relative Virtues of Decentralized, Emergent Law, http://www.cli.org/emdraft.html,

2000-09-19.

Johnson, D. R. and Post, D. G. (1996b). Law and Borders – The Rise of Law in Cyberspace.

Stanford Law Review, 48:1367.

Johnston, D., Handa, S., and Morgan, C. (1997).Cyberlaw. Toronto: Stoddart.

Kalt, C. (2000a). Internet Relay Chat: Architecture (RFC 2810). Request for Comments

(RFC) 2810, Internet Engineering Task Force, Network Working Group.

Kalt, C. (2000b). Internet Relay Chat: Channel Management (RFC 2811). Request for Com-

ments (RFC) 2811, Internet Engineering Task Force, NetworkWorking Group.

Kalt, C. (2000c). Internet Relay Chat: Client Protocol (RFC2812). Request for Comments

(RFC) 2812, Internet Engineering Task Force, Network Working Group.

Kalt, C. (2000d). Internet Relay Chat: Server Protocol (RFC2813). Request for Comments

(RFC) 2813, Internet Engineering Task Force, Network Working Group.

Katyal, N. K. (2003). Digital Architecture as Crime Control. Yale Law Journal, 111:2261–

2291.

Kesan, J. P. and Shah, R. C. (2002). Shaping Code. Technical Report 2-18, University of

Illinois College of Law.

Kesan, J. P. and Shah, R. C. (2003a). Incorporating SocietalConcerns into Communication

Technologies.IEEE Technology and Society Magazine, Summer:28–33.

Kesan, J. P. and Shah, R. C. (2003b). Manipulating the Governance Characteristics of Code.

Research Paper 03-18, Illinois Public Law and Legal Theory Research.

Kesan, J. P. and Shah, R. C. (2004). Deconstructing Code. Research Paper 04-22, University

of Illinois College of Law.

Kzoo and LadyDana (2001). Managing Annoyances on IRC. Version 1.0.0,

http://docs.dal.net/docs/annoy.html, 2002-12-20.

213

Bibliography

Lawrie, M. (2005). Brief history of the #gb channel, http://uknet.com/gb/gb-lorry.html, 2005-

01-20.

Lemley, M. A. (1998). The Law and Economics of Internet Norms. Chicago-Kent Review,

73:1257–1294.

Lessig, L. (1998). The New Chicago School.The Journal of Legal Studies, XXVII(2):661–

691.

Lessig, L. (1999a).Code and other Laws of Cyberspace. Basic Book.

Lessig, L. (1999b). The Law of the Horse: What Cyberlaw MightTeach. Harvard Law

Review, 113(2):501–549.

Lessig, L. (1999c). Open Code and Open Societies: Values of Internet Governance,

http://www.lessig.org/content/articles/works/final.pdf, 2004-08-24.

Lessig, L. (2001).The Future of Ideas. The Fate of the Commons in a Connected World. New

York: Random House.

MacNeil, M. (1999). Cyberspace Governance: Canadian Reflections,

http://www.admissions.carleton.ca/ mmacneil/118/1999/draft-macneil-cyber.htm, 2001-

02-04.

McTaggart, C. (1999). Governance Of The Internet’s Infrastructure: Network Policy For The

Global Public Network. Master’s thesis, Faculty of Law, University of Toronto, Canada.

Mirashi, M. and Brown, S. (2003). The History of the Undernet, http://www.user-

com.undernet.org/documents/uhistory.txt, 2003-02-26.

Oberding, J. M. and Norderhaug, T. (1996). A Separate Jurisdiction For Cyberspace?Journal

of Computer Mediated Communication, 2(1).

Oikarinen, J. and Reed, D. (1993). Internet Relay Chat Protocol (RFC 1459). Request for

Comments (RFC) 1459, Internet Engineering Task Force, Network Working Group.

Operlist (1992). Operlist mailing list September 1991-February 1992,

ftp://metalab.unc.edu/pub/academic/communications/papers/irc/lists/irclist-operlist.Z,

2000-03-23.

Operlist (1993). Operlist mailing list July 1992-February1993,

ftp://metalab.unc.edu/pub/academic/communications/papers/irc/lists/operlist-archive-

12Feb93.Z, 2000-03-24.

214

Bibliography

operlist (1993). Operlist mailing list November 1992-March 1993,

ftp://metalab.unc.edu/pub/academic/communications/papers/irc/lists/operlist-archive-

31Mar93.Z, 2000-03-24.

Ostrom, E. (1990). Governing the Commons. The Evolution of Institutions for Collective

Action. Cambridge (UK), New York, Melbourne, Madrid: Cambridge University Press.

Padlipsky, M. (1982). A Perspective on the ARPANET Reference Model. Request for Com-

ments (RFC) 871, Internet Engineering Task Force.

Paulsen, V. and Fleckenstein, U. (1997). No Script FAQ: Warum Scripts IRC schaden [ger-

man], http://orgwis.gmd.de/IRC/NoScript.html, 2003-02-03.

Perlman, R. (2000).Interconnections, Second Edition. Bridges, Routers, Switches, and Inter-

networking Protocols. Reading (MA): Addison Wesley, 2nd edition edition.

Pioch, N. (1993). A Short IRC Primer, http://www.irc.org/docs/primer.txt, 2002-08-22.

PJKevin and Dalila (2004). DALnet History. Version 1.1.0,

http://docs.dal.net/docs/history.html, 2005-01-25.

PJKevin and LadyDana (2004). NickServ Options. Version 1.1.2,

http://docs.dal.net/docs/nickserv.html, 2005-01-06.

PJKevin and Mystro (2004). ChanServ Information. Version 1.1.4,

http://docs.dal.net/docs/chanserv.html, 2004-12-04.

PJKevin and quen (2004). Controlling access to your channel. Version 1.1.2,

http://docs.dal.net/docs/csaccess.html, 2004-08-10.

Radin, M. J. and Wagner, P. (1999). The Myth of Private Ordering. Rediscovering Legal

Realism in Cyberspace, http://ssrn.com/abstract=162488, 2001-02-16.Chicago-Kent Law

Review (forthcoming 1999).

Reed, D. P., Saltzer, J. H., and Clark, D. D. (1998). Active Networking and End-To-End

Arguments.IEEE Network, 12(3):69–71.

Reid, E. M. (1991).Electropolis: Communication and Community on Internet Relay Chat.

PhD thesis, University of Melbourne, Department of History.

Reidenberg, J. R. (1998). Lex Informatica: The Formulationof Information Policy Rules

through Technology.Texas Law Review, 76(3):533–593.

215

Bibliography

Richter, R. and Furubotn, E. G. (1999).Neue Institutionenökonomik (Institutions and Eco-

nomic Theory [german]). Tübingen: J.C.B. Mohr.

Riedel (2001). EFnet Oper Guide, http://ftp.ircdhelp.org/helpdocs/hybrid7/operguide.txt,

2003-01-13.

Rollo, T. (1992). A Description of the DCC Protocol,

ftp://ircdhelp.org/helpdocs/misc/DCC.doc, 2004-01-13.

Rose, H. and Ian (1999). Early IRC history, http://www.the-project.org/history.html, 1999-12-

17.

Rosenoer, J. (1997).CyberLaw. The Law of the Internet. New York etc.: Springer.

Saltzer, J., Reed, D., and Clark, D. (1984). End-to-End Arguments in System Design.ACM

Transactions on Computer Systems, 2(4):277–288.

Stenberg, D. (1998). History of IRC (Internet Relay Chat),

http://www.fts.frontec.se/ dast/irc/history.html, 2002-06-14.

Tanenbaum, A. (1989).Computer Networks. Englewood Cliffs (NJ): Prentice-Hall, 2nd edi-

tion edition.

Undernet-CService (1997). Channel Service Frequently Asked Questions,

http://cservice.undernet.org/Channel service/faq.html, 2000-05-20.

Undernet-CService (1998). The Undernet Channel Service - Guidelines,

http://cservice.undernet.org/docs/guidelines.html, 2003-06-04.

Undernet-CService (1999). X and W Commands List,

http://cservice.undernet.org/docs/xwcoms.html, 2000-05-20.

Undernet-CService (2002). Channel Service Acceptable UsePolicy,

http://cservice.undernet.org/live/regproc/aup.php, 2005-04-20.

Undernet-CService (2003). CService OpSchool: Username and Channel Registrations,

http://cservice.undernet.org/docs/opschool1.undernet.txt, 2003-04-16.

Undernet-User-Committee (1996). Interview with Jarkko Oikarinen, http://www.user-

com.undernet.org/promotions/jarkko.php, 2005-04-24.

Undernet-User-Committee (1997a). CTCP and DCC Protocol Questions,

http://www.undernet.org/user-com/documents/ctcpinfo.txt, 2003-06-04.

216

Bibliography

Undernet-User-Committee (1997b). Interview with Carlo Wood, http://www.user-

com.undernet.org/promotions/carlo.php, 2005-04-24.

Undernet-User-Committee (2001). Undernet IRCop FAQ (for Non-IRCops), http://user-

com.undernet.org/documents/operfaq.txt, 2003-06-04.

Valauskas (1996). Lex Networkia: Understanding the Internet Community.First Monday, (4).

van Schewick, B. (2004).Architecture and Innovation. The Role of the End-to-End Arguments

in the Original Internet.PhD thesis, Technical University, Berlin.

Wu, T. (1999). Application v. Internet – An Introduction to Application-Centered Internet

Analysis.Virginia Law Review, 85(6):1163–1204.

217

